Overproduction of docosahexaenoic acid in Schizochytrium sp. through genetic engineering of oxidative stress defense pathways

Background: Oxidation and peroxidation of lipids in microorganisms result in increased levels of intracellular reactive oxygen species (ROS) and reactive aldehydes, and consequent reduction of cell growth and lipid accumulation. Results: To reduce oxygen-mediated cell damage and increase lipid and d...

Full description

Bibliographic Details
Main Authors: Chen, Z. (Author), Han, X. (Author), Li, Z. (Author), Wen, Y. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03006nam a2200589Ia 4500
001 10.1186-s13068-021-01918-w
008 220427s2021 CNT 000 0 und d
020 |a 17546834 (ISSN) 
245 1 0 |a Overproduction of docosahexaenoic acid in Schizochytrium sp. through genetic engineering of oxidative stress defense pathways 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s13068-021-01918-w 
520 3 |a Background: Oxidation and peroxidation of lipids in microorganisms result in increased levels of intracellular reactive oxygen species (ROS) and reactive aldehydes, and consequent reduction of cell growth and lipid accumulation. Results: To reduce oxygen-mediated cell damage and increase lipid and docosahexaenoic acid (DHA) production in Schizochytrium sp., we strengthened the oxidative stress defense pathways. Overexpression of the enzymes thioredoxin reductase (TRXR), aldehyde dehydrogenase (ALDH), glutathione peroxidase (GPO), and glucose-6-phosphate dehydrogenase (ZWF) strongly promoted cell growth, lipid yield, and DHA production. Coexpression of ZWF, ALDH, GPO, and TRXR enhanced ROS-scavenging ability. Highest values of dry cell weight, lipid yield, and DHA production (50.5 g/L, 33.1 g/L, and 13.3 g/L, respectively) were attained in engineered strain OaldH-gpo-trxR by shake flask fed-batch culture; these were increases of 18.5%, 80.9%, and 114.5% relative to WT values. Conclusions: Our findings demonstrate that engineering of oxidative stress defense pathways is an effective strategy for promoting cell robustness, lipid yield, and DHA production in Schizochytrium. © 2021, The Author(s). 
650 0 4 |a accumulation 
650 0 4 |a Aldehyde dehydrogenase 
650 0 4 |a Aldehydes 
650 0 4 |a Batch cell culture 
650 0 4 |a Cell engineering 
650 0 4 |a Cell growth 
650 0 4 |a Cell proliferation 
650 0 4 |a Cells 
650 0 4 |a cyanobacterium 
650 0 4 |a defense behavior 
650 0 4 |a Docosahexaenoic acid 
650 0 4 |a Docosahexaenoic acid 
650 0 4 |a fatty acid 
650 0 4 |a Fed-batch cultures 
650 0 4 |a gene expression 
650 0 4 |a genetic engineering 
650 0 4 |a Genetic engineering 
650 0 4 |a Genetic engineering 
650 0 4 |a Glucose-6-phosphate dehydrogenase 
650 0 4 |a Glutathione peroxidase 
650 0 4 |a Growth kinetics 
650 0 4 |a growth rate 
650 0 4 |a lipid 
650 0 4 |a Lipid accumulations 
650 0 4 |a Network security 
650 0 4 |a oxidative stress 
650 0 4 |a Oxidative stress 
650 0 4 |a Oxidative stress defense pathway 
650 0 4 |a Oxygen 
650 0 4 |a reactive oxygen species 
650 0 4 |a Scavenging ability 
650 0 4 |a Schizochytrium 
650 0 4 |a Schizochytrium sp 
650 0 4 |a Thioredoxin reductase 
650 0 4 |a Unsaturated fatty acids 
700 1 |a Chen, Z.  |e author 
700 1 |a Han, X.  |e author 
700 1 |a Li, Z.  |e author 
700 1 |a Wen, Y.  |e author 
773 |t Biotechnology for Biofuels