Enhanced methane production from cellulose using a two-stage process involving a bioelectrochemical system and a fixed film reactor

Background: It is desirable to improve the anaerobic digestion processes of recalcitrant materials, such as cellulose. Enhancement of methane (CH4) production from organic molecules was previously accomplished through coupling a bioelectrochemical system (BES); however, scaling-up BES-based producti...

Full description

Bibliographic Details
Main Authors: Kondo, A. (Author), Morita, M. (Author), Sasaki, D. (Author), Sasaki, K. (Author), Tsuge, Y. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
RNA
Online Access:View Fulltext in Publisher
LEADER 04594nam a2200697Ia 4500
001 10.1186-s13068-020-01866-x
008 220427s2021 CNT 000 0 und d
020 |a 17546834 (ISSN) 
245 1 0 |a Enhanced methane production from cellulose using a two-stage process involving a bioelectrochemical system and a fixed film reactor 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s13068-020-01866-x 
520 3 |a Background: It is desirable to improve the anaerobic digestion processes of recalcitrant materials, such as cellulose. Enhancement of methane (CH4) production from organic molecules was previously accomplished through coupling a bioelectrochemical system (BES); however, scaling-up BES-based production is difficult. Here, we developed a two-stage process consisting of a BES using low-cost and low-reactive carbon sheets as the cathode and anode, and a fixed film reactor (FFR) containing conductive material, i.e., carbon fiber textiles (CFTs) (:BES → FFR). By controlling the cathodic current at 2.7 μA/cm2 without abiotic H2 production, the three-electrode BES system was operated to mimic a microbial electrolysis cell. Results: The thermophilic BES (inlet pH: 6.1) and FFR (inlet pH: 7.5) were operated using hydraulic retention times (HRTs) of 2.5 and 4.2 days, respectively, corresponding to a cellulose load of 3555.6 mg-carbon (C)/(L day). The BES → FFR process achieved a higher CH4 yield (37.5%) with 52.8 vol% CH4 in the product gas compared to the non-bioelectrochemical system (NBES) → FFR process, which showed a CH4 yield of 22.1% with 46.8 vol% CH4. The CH4 production rate (67.5 mM/day) obtained with the BER → FFR process was much higher than that obtained using electrochemical methanogenesis (0.27 mM/day). Application of the electrochemical system or CFTs improved the yields of CH4 with the NBES → FFR or BES → non-fixed film reactor process, respectively. Meta 16S rRNA sequencing revealed that putative cellulolytic bacteria (identified as Clostridium species) were present in the BES and NBES, and followed (BES→ and NBES→) FFR. Notably, H2-consuming methanogens, Methanobacterium sp. and Methanosarcina sp., showed increased relative abundances in the suspended fraction and attached fraction of (BES→) FFR, respectively, compared to that of (NBES→) FFR, although these methanogens were observed at trace levels in the BES and NBES. Conclusions: These results indicate that bioelectrochemical preprocessing at a low current effectively induces interspecies H2 transfer in the FFR with conductive material. Sufficient electrochemical preprocessing was observed using a relatively short HRT. This type of two-stage process, BES → FFR, is useful for stabilization and improvement of the biogas (CH4) production from cellulosic material, and our results imply that the two-stage system developed here may be useful with other recalcitrant materials. © 2021, The Author(s). 
650 0 4 |a Anaerobic digestion 
650 0 4 |a Anaerobic digestion process 
650 0 4 |a Bio-electrochemical 
650 0 4 |a Bioelectrochemical system 
650 0 4 |a Bio-electrochemical systems 
650 0 4 |a Bioelectrochemical systems (BES) 
650 0 4 |a biofilm 
650 0 4 |a Carbon Fibers 
650 0 4 |a Cellulolytic bacterium 
650 0 4 |a cellulose 
650 0 4 |a Cellulose 
650 0 4 |a Cellulose 
650 0 4 |a Cellulose 
650 0 4 |a Cellulosic material 
650 0 4 |a Clostridium 
650 0 4 |a Conductive materials 
650 0 4 |a Electrochemical systems 
650 0 4 |a Electrodes 
650 0 4 |a Electrodes 
650 0 4 |a Entertainment industry 
650 0 4 |a experimental study 
650 0 4 |a Fixed film reactor 
650 0 4 |a Graphite fibers 
650 0 4 |a Hydraulic retention time 
650 0 4 |a Hydrogen production 
650 0 4 |a Hydrogenotrophic methanogen 
650 0 4 |a methane 
650 0 4 |a Methane 
650 0 4 |a Methane 
650 0 4 |a Methane 
650 0 4 |a Methanobacterium sp. 
650 0 4 |a Methanogens 
650 0 4 |a Methanosarcina sp. 
650 0 4 |a Microbial fuel cells 
650 0 4 |a molecular analysis 
650 0 4 |a Nucleic Acids 
650 0 4 |a pollutant removal 
650 0 4 |a Processes 
650 0 4 |a Productivity 
650 0 4 |a Regenerative fuel cells 
650 0 4 |a RNA 
650 0 4 |a Systems 
650 0 4 |a Two-stage process 
700 1 |a Kondo, A.  |e author 
700 1 |a Morita, M.  |e author 
700 1 |a Sasaki, D.  |e author 
700 1 |a Sasaki, K.  |e author 
700 1 |a Tsuge, Y.  |e author 
773 |t Biotechnology for Biofuels