Automated nutrient screening system enables high-throughput optimisation of microalgae production conditions
Background: Microalgae provide an excellent platform for the production of high-value-products and are increasingly being recognised as a promising production system for biomass, animal feeds and renewable fuels. Results: Here, we describe an automated screen, to enable high-throughput optimisation...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BioMed Central Ltd.
2015
|
Subjects: | |
Online Access: | View Fulltext in Publisher View in Scopus |
Summary: | Background: Microalgae provide an excellent platform for the production of high-value-products and are increasingly being recognised as a promising production system for biomass, animal feeds and renewable fuels. Results: Here, we describe an automated screen, to enable high-throughput optimisation of 12 nutrients for microalgae production. Its miniaturised 1,728 multiwell format allows multiple microalgae strains to be simultaneously screened using a two-step process. Step 1 optimises the primary elements nitrogen and phosphorous. Step 2 uses Box-Behnken analysis to define the highest growth rates within the large multidimensional space tested (Ca, Mg, Fe, Mn, Zn, Cu, B, Se, V, Si) at three levels (-1, 0, 1). The highest specific growth rates and maximum OD750 values provide a measure for continuous and batch culture. Conclusion: The screen identified the main nutrient effects on growth, pairwise nutrient interactions (for example, Ca-Mg) and the best production conditions of the sampled statistical space providing the basis for a targeted full factorial screen to assist with optimisation of algae production. © 2015 Radzun et al.; licensee BioMed Central. |
---|---|
ISBN: | 17546834 (ISSN) |
DOI: | 10.1186/s13068-015-0238-7 |