Summary: | Backgrounds: Observable emergence of Vancomycin-Non susceptible Coagulase-negative Staphylococci (VNS-CoNS) associated with skin and soft tissue infections spreading among the urban and rural populace is gradually intensifying severe complications. The isolated VNS-CoNS were evaluated with Matrix-assisted Laser Desorption/ionization Time of Flight Mass Spectrometry (MALDI ToF MS) for species characterization and pan-antimicrobial resistance pattern. Methods: Out of 256 clinical samples collected including pus, abscess, ear swabs, eye swabs, and aspirates, 91 CoNS isolates were biotyped and further characterized with MALDI-TOF MS. Staphylococci marker genes, Vancomycin susceptibility, and biofilm assays were performed. Results: Of 91 CoNS isolates, S.cohnii (2.3%), S.condimentii (3.4%), S. saprophyticus (6.7%), and S.scuri (21.1%) were characterized with MALDI-TOF with significant detection rate (99.4%; CI 95, 0.775–0.997, positive predictive values, 90.2%) compared to lower biotyping detection rate (p = 0.001). Hemolytic VNS-CoNS lacked nuc, pvl and spa genes from wound, ear, and aspirates of more 0.83 MARI clustered into a separate phylo-diverse group and were widely distributed in urban and peri-urban locations. MALDI TOF–MS yielded a high discriminatory potential of AUC-ROC score of 0.963 with true-positivity prediction. VNS-CoNS of MIC ≥ 16 µg/mL were observed among all the ages with significant resistance at 25th and 75th quartiles. More than 10.5% of CoNS expressed multi-antibiotic resistance with more than 8 µg/mL vancomycin cut-off values (p < 0.05). Conclusion: Antibiotic resistant CoNS should be considered significant pathogens rather than contaminant. Biofilm producing VNS-S. sciuri and S. condimentii are potential strains with high pathological tropism for skin, soft tissues and wound infections, and these strains require urgent surveillance in peri-urban and rural communities. © 2022, The Author(s).
|