A novel method for periapical microsurgery with the aid of 3D technology: A case report

Background: Three-dimensional (3D) technology has gained wide acceptance in dentistry. It has been used for treatment planning and surgical guidance. This case report presented a novel treatment approach to remove cortical bone and root-end during periapical surgery with the help of Cone-Beam Comput...

Full description

Bibliographic Details
Main Authors: Jiang, Q. (Author), Wang, W. (Author), Yang, X. (Author), Ye, S. (Author), Zhao, S. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd. 2018
Subjects:
Online Access:View Fulltext in Publisher
Description
Summary:Background: Three-dimensional (3D) technology has gained wide acceptance in dentistry. It has been used for treatment planning and surgical guidance. This case report presented a novel treatment approach to remove cortical bone and root-end during periapical surgery with the help of Cone-Beam Computed Tomography (CBCT), Computer Aided Design (CAD) and three-dimensional (3D) printing technology. Case presentation: A 37-year-old female patient presented with a large periapical lesion of left maxillary lateral incisor and canine was referred for microsurgical endodontic surgery. The data acquired from a preoperative diagnostic CBCT scan and an intra-oral scan was uploaded into surgical planning software and matched. A template that could be used to locate root-ends and lesion areas was virtually designed based on the data and was fabricated using a 3D printer. With the guidance of the template, the overlying cortical bone and root-end were precisely removed by utilizing a trephine with an external diameter of 4.0 mm. The patient was clinically asymptomatic at a six-month follow-up review. One year after the surgery, the lesion was healing well and no periapical radiolucency was observed on radiographic examination. Conclusions: The digitally designed directional template worked in all aspects to facilitate the periapical surgery as anticipated. The root-ends were accurately located and resected. The surgical procedure was simplified, and the treatment efficiency was improved. This technique minimized the damage and reduced iatrogenic injury. © 2018 The Author(s).
ISBN:14726831 (ISSN)
DOI:10.1186/s12903-018-0546-y