CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model

Background: Anticancer peptides are defence substances with innate immune functions that can selectively act on cancer cells without harming normal cells and many studies have been conducted to identify anticancer peptides. In this paper, we introduce the anticancer peptide secondary structures as a...

Full description

Bibliographic Details
Main Authors: Li, H. (Author), Wang, H. (Author), Wang, J. (Author), Zhao, H. (Author), Zhao, J. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02957nam a2200457Ia 4500
001 10.1186-s12859-021-04433-9
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04433-9 
520 3 |a Background: Anticancer peptides are defence substances with innate immune functions that can selectively act on cancer cells without harming normal cells and many studies have been conducted to identify anticancer peptides. In this paper, we introduce the anticancer peptide secondary structures as additional features and propose an effective computational model, CL-ACP, that uses a combined network and attention mechanism to predict anticancer peptides. Results: The CL-ACP model uses secondary structures and original sequences of anticancer peptides to construct the feature space. The long short-term memory and convolutional neural network are used to extract the contextual dependence and local correlations of the feature space. Furthermore, a multi-head self-attention mechanism is used to strengthen the anticancer peptide sequences. Finally, three categories of feature information are classified by cascading. CL-ACP was validated using two types of datasets, anticancer peptide datasets and antimicrobial peptide datasets, on which it achieved good results compared to previous methods. CL-ACP achieved the highest AUC values of 0.935 and 0.972 on the anticancer peptide and antimicrobial peptide datasets, respectively. Conclusions: CL-ACP can effectively recognize antimicrobial peptides, especially anticancer peptides, and the parallel combined neural network structure of CL-ACP does not require complex feature design and high time cost. It is suitable for application as a useful tool in antimicrobial peptide design. © 2021, The Author(s). 
650 0 4 |a amino acid sequence 
650 0 4 |a Amino Acid Sequence 
650 0 4 |a Anticancer peptide 
650 0 4 |a Anticancer peptide 
650 0 4 |a Antimicrobial peptide 
650 0 4 |a Attention mechanism 
650 0 4 |a Attention mechanisms 
650 0 4 |a Convolutional neural networks 
650 0 4 |a Feature space 
650 0 4 |a Innate immunes 
650 0 4 |a Long short-term memory 
650 0 4 |a Microorganisms 
650 0 4 |a Neural network model 
650 0 4 |a Neural network model 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a Parallel combination 
650 0 4 |a peptide 
650 0 4 |a Peptide recognition 
650 0 4 |a Peptides 
650 0 4 |a Peptides 
650 0 4 |a Recognition models 
650 0 4 |a Secondary structure 
650 0 4 |a Secondary structures 
700 1 |a Li, H.  |e author 
700 1 |a Wang, H.  |e author 
700 1 |a Wang, J.  |e author 
700 1 |a Zhao, H.  |e author 
700 1 |a Zhao, J.  |e author 
773 |t BMC Bioinformatics