AttentionDDI: Siamese attention-based deep learning method for drug–drug interaction predictions

Background: Drug–drug interactions (DDIs) refer to processes triggered by the administration of two or more drugs leading to side effects beyond those observed when drugs are administered by themselves. Due to the massive number of possible drug pairs, it is nearly impossible to experimentally test...

Full description

Bibliographic Details
Main Authors: Allam, A. (Author), Krauthammer, M. (Author), Perez Gonzalez, N.A (Author), Schwarz, K. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03254nam a2200553Ia 4500
001 10.1186-s12859-021-04325-y
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a AttentionDDI: Siamese attention-based deep learning method for drug–drug interaction predictions 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04325-y 
520 3 |a Background: Drug–drug interactions (DDIs) refer to processes triggered by the administration of two or more drugs leading to side effects beyond those observed when drugs are administered by themselves. Due to the massive number of possible drug pairs, it is nearly impossible to experimentally test all combinations and discover previously unobserved side effects. Therefore, machine learning based methods are being used to address this issue. Methods: We propose a Siamese self-attention multi-modal neural network for DDI prediction that integrates multiple drug similarity measures that have been derived from a comparison of drug characteristics including drug targets, pathways and gene expression profiles. Results: Our proposed DDI prediction model provides multiple advantages: (1) It is trained end-to-end, overcoming limitations of models composed of multiple separate steps, (2) it offers model explainability via an Attention mechanism for identifying salient input features and (3) it achieves similar or better prediction performance (AUPR scores ranging from 0.77 to 0.92) compared to state-of-the-art DDI models when tested on various benchmark datasets. Novel DDI predictions are further validated using independent data resources. Conclusions: We find that a Siamese multi-modal neural network is able to accurately predict DDIs and that an Attention mechanism, typically used in the Natural Language Processing domain, can be beneficially applied to aid in DDI model explainability. © 2021, The Author(s). 
650 0 4 |a adverse drug reaction 
650 0 4 |a Attention 
650 0 4 |a Attention mechanisms 
650 0 4 |a Benchmark datasets 
650 0 4 |a Benchmarking 
650 0 4 |a Deep learning 
650 0 4 |a Deep learning 
650 0 4 |a Deep Learning 
650 0 4 |a drug 
650 0 4 |a drug interaction 
650 0 4 |a Drug interactions 
650 0 4 |a Drug Interactions 
650 0 4 |a Drug–drug interactions 
650 0 4 |a Drug-Related Side Effects and Adverse Reactions 
650 0 4 |a Forecasting 
650 0 4 |a Gene expression 
650 0 4 |a Gene expression profiles 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Interaction prediction 
650 0 4 |a Learning systems 
650 0 4 |a Multi-modal neural networks 
650 0 4 |a NAtural language processing 
650 0 4 |a Natural language processing systems 
650 0 4 |a Neural networks 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a Pharmaceutical Preparations 
650 0 4 |a Prediction 
650 0 4 |a Prediction performance 
650 0 4 |a Predictive analytics 
650 0 4 |a Side effects 
650 0 4 |a Similarity measure 
700 1 |a Allam, A.  |e author 
700 1 |a Krauthammer, M.  |e author 
700 1 |a Perez Gonzalez, N.A.  |e author 
700 1 |a Schwarz, K.  |e author 
773 |t BMC Bioinformatics