CHIPIN: ChIP-seq inter-sample normalization based on signal invariance across transcriptionally constant genes

Background: Multiple studies rely on ChIP-seq experiments to assess the effect of gene modulation and drug treatments on protein binding and chromatin structure. However, most methods commonly used for the normalization of ChIP-seq binding intensity signals across conditions, e.g., the normalization...

Full description

Bibliographic Details
Main Authors: Boeva, V. (Author), Esposito, M. (Author), Gregoricchio, S. (Author), Guillouf, C. (Author), Kerdivel, G. (Author), Polit, L. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03440nam a2200517Ia 4500
001 10.1186-s12859-021-04320-3
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a CHIPIN: ChIP-seq inter-sample normalization based on signal invariance across transcriptionally constant genes 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04320-3 
520 3 |a Background: Multiple studies rely on ChIP-seq experiments to assess the effect of gene modulation and drug treatments on protein binding and chromatin structure. However, most methods commonly used for the normalization of ChIP-seq binding intensity signals across conditions, e.g., the normalization to the same number of reads, either assume a constant signal-to-noise ratio across conditions or base the estimates of correction factors on genomic regions with intrinsically different signals between conditions. Inaccurate normalization of ChIP-seq signal may, in turn, lead to erroneous biological conclusions. Results: We developed a new R package, CHIPIN, that allows normalizing ChIP-seq signals across different conditions/samples when spike-in information is not available, but gene expression data are at hand. Our normalization technique is based on the assumption that, on average, no differences in ChIP-seq signals should be observed in the regulatory regions of genes whose expression levels are constant across samples/conditions. In addition to normalizing ChIP-seq signals, CHIPIN provides as output a number of graphs and calculates statistics allowing the user to assess the efficiency of the normalization and qualify the specificity of the antibody used. In addition to ChIP-seq, CHIPIN can be used without restriction on open chromatin ATAC-seq or DNase hypersensitivity data. We validated the CHIPIN method on several ChIP-seq data sets and documented its superior performance in comparison to several commonly used normalization techniques. Conclusions: The CHIPIN method provides a new way for ChIP-seq signal normalization across conditions when spike-in experiments are not available. The method is implemented in a user-friendly R package available on GitHub: https://github.com/BoevaLab/CHIPIN. © 2021, The Author(s). 
650 0 4 |a Algorithm 
650 0 4 |a Binding intensity 
650 0 4 |a Biochemistry 
650 0 4 |a ChIP-seq 
650 0 4 |a chromatin 
650 0 4 |a Chromatin 
650 0 4 |a chromatin immunoprecipitation 
650 0 4 |a Chromatin Immunoprecipitation 
650 0 4 |a Chromatin Immunoprecipitation Sequencing 
650 0 4 |a Chromatin structure 
650 0 4 |a Correction factors 
650 0 4 |a Density profiles 
650 0 4 |a DNA sequence 
650 0 4 |a Expression levels 
650 0 4 |a Gene expression 
650 0 4 |a Gene expression 
650 0 4 |a Gene Expression Data 
650 0 4 |a Normalization 
650 0 4 |a Open chromatin 
650 0 4 |a protein binding 
650 0 4 |a Protein binding 
650 0 4 |a Protein Binding 
650 0 4 |a R package 
650 0 4 |a Regulatory regions 
650 0 4 |a Sequence Analysis, DNA 
650 0 4 |a Signal normalization 
650 0 4 |a Signal to noise ratio 
700 1 |a Boeva, V.  |e author 
700 1 |a Esposito, M.  |e author 
700 1 |a Gregoricchio, S.  |e author 
700 1 |a Guillouf, C.  |e author 
700 1 |a Kerdivel, G.  |e author 
700 1 |a Polit, L.  |e author 
773 |t BMC Bioinformatics