Feature selection and causal analysis for microbiome studies in the presence of confounding using standardization

Background: Microbiome studies have uncovered associations between microbes and human, animal, and plant health outcomes. This has led to an interest in developing microbial interventions for treatment of disease and optimization of crop yields which requires identification of microbiome features th...

Full description

Bibliographic Details
Main Authors: Chiniquy, D. (Author), Goren, E. (Author), He, Z. (Author), Liu, P. (Author), Prenni, J.E (Author), Schachtman, D.P (Author), Sheflin, A.M (Author), Tringe, S. (Author), Wang, C. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03953nam a2200637Ia 4500
001 10.1186-s12859-021-04232-2
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Feature selection and causal analysis for microbiome studies in the presence of confounding using standardization 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04232-2 
520 3 |a Background: Microbiome studies have uncovered associations between microbes and human, animal, and plant health outcomes. This has led to an interest in developing microbial interventions for treatment of disease and optimization of crop yields which requires identification of microbiome features that impact the outcome in the population of interest. That task is challenging because of the high dimensionality of microbiome data and the confounding that results from the complex and dynamic interactions among host, environment, and microbiome. In the presence of such confounding, variable selection and estimation procedures may have unsatisfactory performance in identifying microbial features with an effect on the outcome. Results: In this manuscript, we aim to estimate population-level effects of individual microbiome features while controlling for confounding by a categorical variable. Due to the high dimensionality and confounding-induced correlation between features, we propose feature screening, selection, and estimation conditional on each stratum of the confounder followed by a standardization approach to estimation of population-level effects of individual features. Comprehensive simulation studies demonstrate the advantages of our approach in recovering relevant features. Utilizing a potential-outcomes framework, we outline assumptions required to ascribe causal, rather than associational, interpretations to the identified microbiome effects. We conducted an agricultural study of the rhizosphere microbiome of sorghum in which nitrogen fertilizer application is a confounding variable. In this study, the proposed approach identified microbial taxa that are consistent with biological understanding of potential plant-microbe interactions. Conclusions: Standardization enables more accurate identification of individual microbiome features with an effect on the outcome of interest compared to other variable selection and estimation procedures when there is confounding by a categorical variable. © 2021, The Author(s). 
650 0 4 |a Agricultural robots 
650 0 4 |a Agriculture 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Bacteria 
650 0 4 |a Categorical variables 
650 0 4 |a Causal inference 
650 0 4 |a Confounding Factors, Epidemiologic 
650 0 4 |a Correlation between features 
650 0 4 |a Diagnosis 
650 0 4 |a Dynamic interaction 
650 0 4 |a Estimation procedures 
650 0 4 |a Feature extraction 
650 0 4 |a Fertilizer applications 
650 0 4 |a High-dimensional feature selection 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Identification of individuals 
650 0 4 |a Microbiome analysis 
650 0 4 |a Microbiota 
650 0 4 |a microflora 
650 0 4 |a Next-generation sequencing 
650 0 4 |a Nitrogen fertilizers 
650 0 4 |a plant 
650 0 4 |a Plant-microbe interactions 
650 0 4 |a Plants 
650 0 4 |a Population-level effects 
650 0 4 |a Reference Standards 
650 0 4 |a rhizosphere 
650 0 4 |a Rhizosphere 
650 0 4 |a Soils 
650 0 4 |a standard 
650 0 4 |a Standardization 
650 0 4 |a Standardization 
700 1 |a Chiniquy, D.  |e author 
700 1 |a Goren, E.  |e author 
700 1 |a He, Z.  |e author 
700 1 |a Liu, P.  |e author 
700 1 |a Prenni, J.E.  |e author 
700 1 |a Schachtman, D.P.  |e author 
700 1 |a Sheflin, A.M.  |e author 
700 1 |a Tringe, S.  |e author 
700 1 |a Wang, C.  |e author 
773 |t BMC Bioinformatics