Accurate and fast mitotic detection using an anchor-free method based on full-scale connection with recurrent deep layer aggregation in 4D microscopy images

Background: To effectively detect and investigate various cell-related diseases, it is essential to understand cell behaviour. The ability to detection mitotic cells is a fundamental step in diagnosing cell-related diseases. Convolutional neural networks (CNNs) have been successfully applied to obje...

Full description

Bibliographic Details
Main Authors: Chen, Y.-W (Author), Ipponjima, S. (Author), Iwamoto, Y. (Author), Kitrungrotsakul, T. (Author), Li, J. (Author), Lin, L. (Author), Nemoto, T. (Author), Takemoto, S. (Author), Tong, R. (Author), Yokota, H. (Author)
Format: Article
Language:English
Published: BioMed Central Ltd 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03246nam a2200565Ia 4500
001 10.1186-s12859-021-04014-w
008 220427s2021 CNT 000 0 und d
020 |a 14712105 (ISSN) 
245 1 0 |a Accurate and fast mitotic detection using an anchor-free method based on full-scale connection with recurrent deep layer aggregation in 4D microscopy images 
260 0 |b BioMed Central Ltd  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/s12859-021-04014-w 
520 3 |a Background: To effectively detect and investigate various cell-related diseases, it is essential to understand cell behaviour. The ability to detection mitotic cells is a fundamental step in diagnosing cell-related diseases. Convolutional neural networks (CNNs) have been successfully applied to object detection tasks, however, when applied to mitotic cell detection, most existing methods generate high false-positive rates due to the complex characteristics that differentiate normal cells from mitotic cells. Cell size and orientation variations in each stage make detecting mitotic cells difficult in 2D approaches. Therefore, effective extraction of the spatial and temporal features from mitotic data is an important and challenging task. The computational time required for detection is another major concern for mitotic detection in 4D microscopic images. Results: In this paper, we propose a backbone feature extraction network named full scale connected recurrent deep layer aggregation (RDLA++) for anchor-free mitotic detection. We utilize a 2.5D method that includes 3D spatial information extracted from several 2D images from neighbouring slices that form a multi-stream input. Conclusions: Our proposed technique addresses the scale variation problem and can efficiently extract spatial and temporal features from 4D microscopic images, resulting in improved detection accuracy and reduced computation time compared with those of other state-of-the-art methods. © 2021, The Author(s). 
650 0 4 |a 4D image 
650 0 4 |a cell 
650 0 4 |a cell function 
650 0 4 |a Cell Physiological Phenomena 
650 0 4 |a Cells 
650 0 4 |a Complex characteristics 
650 0 4 |a Computational time 
650 0 4 |a Convolutional neural networks 
650 0 4 |a Cytology 
650 0 4 |a detection 
650 0 4 |a Detection accuracy 
650 0 4 |a Diagnosis 
650 0 4 |a Extraction 
650 0 4 |a False positive rates 
650 0 4 |a Feature extraction 
650 0 4 |a Image enhancement 
650 0 4 |a microscopic image 
650 0 4 |a Microscopic image 
650 0 4 |a microscopy 
650 0 4 |a Microscopy 
650 0 4 |a mitotic 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a Object detection 
650 0 4 |a Recurrent neural networks 
650 0 4 |a Spatial informations 
650 0 4 |a State-of-the-art methods 
650 0 4 |a Temporal features 
700 1 |a Chen, Y.-W.  |e author 
700 1 |a Ipponjima, S.  |e author 
700 1 |a Iwamoto, Y.  |e author 
700 1 |a Kitrungrotsakul, T.  |e author 
700 1 |a Li, J.  |e author 
700 1 |a Lin, L.  |e author 
700 1 |a Nemoto, T.  |e author 
700 1 |a Takemoto, S.  |e author 
700 1 |a Tong, R.  |e author 
700 1 |a Yokota, H.  |e author 
773 |t BMC Bioinformatics