Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid

The problem of a steady boundary layer shear flow over a stretching/shrinking sheet in a nanofluid is studied numerically. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-K...

Full description

Bibliographic Details
Main Authors: Ishak, A. (Author), Pop, I. (Author), Vajravelu, K. (Author), Yacob, N.A (Author)
Format: Article
Language:English
Published: Springer New York LLC 2011
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02763nam a2200505Ia 4500
001 10.1186-1556-276X-6-314
008 220112s2011 CNT 000 0 und d
020 |a 19317573 (ISSN) 
245 1 0 |a Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid 
260 0 |b Springer New York LLC  |c 2011 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1186/1556-276X-6-314 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-82955206048&doi=10.1186%2f1556-276X-6-314&partnerID=40&md5=da1d72d5f739476be70bfdf4a6acb95c 
520 3 |a The problem of a steady boundary layer shear flow over a stretching/shrinking sheet in a nanofluid is studied numerically. The governing partial differential equations are transformed into ordinary differential equations using a similarity transformation, before being solved numerically by a Runge-Kutta-Fehlberg method with shooting technique. Two types of nanofluids, namely, Cu-water and Ag-water are used. The effects of nanoparticle volume fraction, the type of nanoparticles, the convective parameter, and the thermal conductivity on the heat transfer characteristics are discussed. It is found that the heat transfer rate at the surface increases with increasing nanoparticle volume fraction while it decreases with the convective parameter. Moreover, the heat transfer rate at the surface of Cu-water nanofluid is higher than that at the surface of Ag-water nanofluid even though the thermal conductivity of Ag is higher than that of Cu. © 2011 Yacob et al. 
650 0 4 |a Boundary conditions 
650 0 4 |a Boundary layer flow 
650 0 4 |a Boundary layers 
650 0 4 |a Convective parameters 
650 0 4 |a Convective surfaces 
650 0 4 |a Heat convection 
650 0 4 |a Heat transfer characteristics 
650 0 4 |a Heat transfer rate 
650 0 4 |a Nano-fluid 
650 0 4 |a Nanofluidics 
650 0 4 |a Nanofluids 
650 0 4 |a Nanoparticle volume fractions 
650 0 4 |a Nanoparticles 
650 0 4 |a Ordinary differential equations 
650 0 4 |a Partial differential equations 
650 0 4 |a Runge Kutta methods 
650 0 4 |a Runge-Kutta Fehlberg method 
650 0 4 |a Shear flow 
650 0 4 |a Shooting technique 
650 0 4 |a Silver 
650 0 4 |a Similarity transformation 
650 0 4 |a Specific heat 
650 0 4 |a Stretching/shrinking sheets 
650 0 4 |a Surface boundary conditions 
650 0 4 |a Thermal conductivity 
650 0 4 |a Uniform shear flow 
650 0 4 |a Volume fraction 
700 1 0 |a Ishak, A.  |e author 
700 1 0 |a Pop, I.  |e author 
700 1 0 |a Vajravelu, K.  |e author 
700 1 0 |a Yacob, N.A.  |e author 
773 |t Nanoscale Research Letters