Nonlinear decoding of natural images from large-scale primate retinal ganglion recordings

Decoding sensory stimuli from neural activity can provide insight into how the nervous system might interpret the physical environment, and facilitates the development of brain-machine interfaces. Nevertheless, the neural decoding problem remains a significant open challenge. Here, we present an eff...

Full description

Bibliographic Details
Main Authors: Batty, E. (Author), Brackbill, N. (Author), Chichilnisky, E.J (Author), Kim, Y.J (Author), Lee, J. (Author), Mitelut, C. (Author), Paninski, L. (Author), Tong, W. (Author)
Format: Article
Language:English
Published: MIT Press Journals 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02643nam a2200517Ia 4500
001 10.1162-neco_a_01395
008 220427s2021 CNT 000 0 und d
020 |a 08997667 (ISSN) 
245 1 0 |a Nonlinear decoding of natural images from large-scale primate retinal ganglion recordings 
260 0 |b MIT Press Journals  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1162/neco_a_01395 
520 3 |a Decoding sensory stimuli from neural activity can provide insight into how the nervous system might interpret the physical environment, and facilitates the development of brain-machine interfaces. Nevertheless, the neural decoding problem remains a significant open challenge. Here, we present an efficient nonlinear decoding approach for inferring natural scene stimuli from the spiking activities of retinal ganglion cells (RGCs). Our approach uses neural networks to improve on existing decoders in both accuracy and scalability. Trained and validated on real retinal spike data from more than 1000 simultaneously recorded macaque RGC units, the decoder demonstrates the necessity of nonlinear computations for accurate decoding of the fine structures of visual stimuli. Specifically, high-pass spatial features of natural images can only be decoded using nonlinear techniques, while low-pass features can be extracted equally well by linear and nonlinear methods. Together, these results advance the state of the art in decoding natural stimuli from large populations of neurons. © 2021 Massachusetts Institute of Technology. 
650 0 4 |a Aldehydes 
650 0 4 |a animal 
650 0 4 |a Animals 
650 0 4 |a Brain 
650 0 4 |a brain computer interface 
650 0 4 |a Brain computer interface 
650 0 4 |a Brain machine interface 
650 0 4 |a Brain-Computer Interfaces 
650 0 4 |a Decoding 
650 0 4 |a Large population 
650 0 4 |a Macaca 
650 0 4 |a Macaca 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a Neurons 
650 0 4 |a Nonlinear computations 
650 0 4 |a Non-linear methods 
650 0 4 |a Nonlinear techniques 
650 0 4 |a Ophthalmology 
650 0 4 |a Physical environments 
650 0 4 |a retina 
650 0 4 |a Retina 
650 0 4 |a retina ganglion cell 
650 0 4 |a Retinal ganglion cells 
650 0 4 |a Retinal Ganglion Cells 
650 0 4 |a Spatial features 
700 1 |a Batty, E.  |e author 
700 1 |a Brackbill, N.  |e author 
700 1 |a Chichilnisky, E.J.  |e author 
700 1 |a Kim, Y.J.  |e author 
700 1 |a Lee, J.  |e author 
700 1 |a Mitelut, C.  |e author 
700 1 |a Paninski, L.  |e author 
700 1 |a Tong, W.  |e author 
773 |t Neural Computation