Impact of Wireless Sensor Data Mining with Hybrid Deep Learning for Human Activity Recognition

Human activity recognition is a time series classification problem that is difficult to solve (HAR). Traditional signal processing approaches and domain expertise are necessary to appropriately create features from raw data and fit a machine learning model for predicting a person's movement. Th...

Full description

Bibliographic Details
Main Authors: Mansour, R.F (Author), Mohammad, K.A (Author), Mujallid, O.A (Author), Nair, R. (Author), Ragab, M. (Author), Viju, G.K (Author)
Format: Article
Language:English
Published: Hindawi Limited 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02162nam a2200385Ia 4500
001 10.1155-2022-9457536
008 220425s2022 CNT 000 0 und d
020 |a 15308669 (ISSN) 
245 1 0 |a Impact of Wireless Sensor Data Mining with Hybrid Deep Learning for Human Activity Recognition 
260 0 |b Hindawi Limited  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1155/2022/9457536 
520 3 |a Human activity recognition is a time series classification problem that is difficult to solve (HAR). Traditional signal processing approaches and domain expertise are necessary to appropriately create features from raw data and fit a machine learning model for predicting a person's movement. This work aims to demonstrate how a hybrid deep learning model may be used to recognize human behavior. Deep learning methodologies such as convolutional neural networks and recurrent neural networks will extract the features and achieve the classification goal. The suggested model has used wireless sensor data mining datasets to predict human activity. The model's performance has been assessed using the confusion matrix, accuracy, training loss, and testing loss. Thus, the model has achieved greater than 96% accuracy, superior to other state-of-the-art algorithms in this field. © 2022 Rajit Nair et al. 
650 0 4 |a Behavioral research 
650 0 4 |a Convolutional neural networks 
650 0 4 |a Data mining 
650 0 4 |a Domain expertise 
650 0 4 |a Human activity recognition 
650 0 4 |a Human behaviors 
650 0 4 |a Learning models 
650 0 4 |a Machine learning models 
650 0 4 |a Pattern recognition 
650 0 4 |a Processing approach 
650 0 4 |a Recurrent neural networks 
650 0 4 |a Sensor-data mining 
650 0 4 |a Signal processing 
650 0 4 |a Signal-processing 
650 0 4 |a Time series classifications 
650 0 4 |a Wireless sensor data 
700 1 |a Mansour, R.F.  |e author 
700 1 |a Mohammad, K.A.  |e author 
700 1 |a Mujallid, O.A.  |e author 
700 1 |a Nair, R.  |e author 
700 1 |a Ragab, M.  |e author 
700 1 |a Viju, G.K.  |e author 
773 |t Wireless Communications and Mobile Computing