Automatic Arrhythmia Detection Based on the Probabilistic Neural Network with FPGA Implementation

This paper presents a prototype implementation of arrhythmia classification using Probabilistic neural network (PNN). Arrhythmia is an irregular heartbeat, resulting in severe heart problems if not diagnosed early. Therefore, accurate and robust arrhythmia classification is a vital task for cardiac...

Full description

Bibliographic Details
Main Authors: Alenezi, F. (Author), Alhudhaif, A. (Author), Althubiti, S.A (Author), Kumar, B. (Author), Polat, K. (Author), Srivastava, R. (Author)
Format: Article
Language:English
Published: Hindawi Limited 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02098nam a2200361Ia 4500
001 10.1155-2022-7564036
008 220425s2022 CNT 000 0 und d
020 |a 1024123X (ISSN) 
245 1 0 |a Automatic Arrhythmia Detection Based on the Probabilistic Neural Network with FPGA Implementation 
260 0 |b Hindawi Limited  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1155/2022/7564036 
520 3 |a This paper presents a prototype implementation of arrhythmia classification using Probabilistic neural network (PNN). Arrhythmia is an irregular heartbeat, resulting in severe heart problems if not diagnosed early. Therefore, accurate and robust arrhythmia classification is a vital task for cardiac patients. The classification of ECG has been performed using PNN into eight ECG classes using a unique combination of six ECG features: heart rate, spectral entropy, and 4th order of autoregressive coefficients. In addition, FPGA implementation has been proposed to prototype the complete system of arrhythmia classification. Artix-7 board has been used for the FPGA implementation for easy and fast execution of the proposed arrhythmia classification. As a result, the average accuracy for ECG classification is found to be 98.27%, and the time consumed in the classification is found to be 17 seconds. © 2022 Rohini Srivastava et al. 
650 0 4 |a Arrhythmia classification 
650 0 4 |a Arrhythmia detection 
650 0 4 |a Cardiac patients 
650 0 4 |a Diseases 
650 0 4 |a ECG features 
650 0 4 |a Electrocardiography 
650 0 4 |a Field programmable gate arrays (FPGA) 
650 0 4 |a FPGA implementations 
650 0 4 |a FPGAs implementation 
650 0 4 |a Heart-rate 
650 0 4 |a Neural networks 
650 0 4 |a Neural-networks 
650 0 4 |a Probabilistics 
650 0 4 |a Prototype implementations 
700 1 |a Alenezi, F.  |e author 
700 1 |a Alhudhaif, A.  |e author 
700 1 |a Althubiti, S.A.  |e author 
700 1 |a Kumar, B.  |e author 
700 1 |a Polat, K.  |e author 
700 1 |a Srivastava, R.  |e author 
773 |t Mathematical Problems in Engineering