A Robust Multiframe Image Super-Resolution Method in Variational Bayesian Framework

Multiframe image super-resolution (MISR) combines complementary information of a set of low-resolution (LR) images to reconstruct a high-resolution (HR) one. In this study, we propose a robust and fully data-driven MISR method in the variational Bayesian framework. Different from the existing variat...

Full description

Bibliographic Details
Main Authors: Fan, X. (Author), Min, L. (Author)
Format: Article
Language:English
Published: Hindawi Limited 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01905nam a2200313Ia 4500
001 10.1155-2022-1497107
008 220425s2022 CNT 000 0 und d
020 |a 1024123X (ISSN) 
245 1 0 |a A Robust Multiframe Image Super-Resolution Method in Variational Bayesian Framework 
260 0 |b Hindawi Limited  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1155/2022/1497107 
520 3 |a Multiframe image super-resolution (MISR) combines complementary information of a set of low-resolution (LR) images to reconstruct a high-resolution (HR) one. In this study, we propose a robust and fully data-driven MISR method in the variational Bayesian framework. Different from the existing variational super-resolution (SR) methods, we use the l1 norm-based observation model, which takes the acquisition noise, outliers, and impulse noise into account. Furthermore, we have evaluated three typical image prior models, and the most appropriate one is chosen for our proposed method. The proposed method has the following advantages: (1) the HR image and all parameters are automatically estimated in an optimal stochastic sense; (2) the algorithm is robust to impulse noise and outliers. Extensive experiments with synthetic and real images demonstrate the advantages of the proposed method. © 2022 Lei Min and Xiangsuo Fan. 
650 0 4 |a Data driven 
650 0 4 |a High resolution 
650 0 4 |a Image priors 
650 0 4 |a Image super resolutions 
650 0 4 |a Impulse noise 
650 0 4 |a L1 norm 
650 0 4 |a Low resolution images 
650 0 4 |a Multiframe images 
650 0 4 |a Observation model 
650 0 4 |a Optical resolving power 
650 0 4 |a Statistics 
650 0 4 |a Stochastic systems 
650 0 4 |a Superresolution methods 
650 0 4 |a Variational Bayesian frameworks 
700 1 |a Fan, X.  |e author 
700 1 |a Min, L.  |e author 
773 |t Mathematical Problems in Engineering