Dynamic finite element analysis of mobile bearing type knee prosthesis under deep flexional motion

The primary objective of this study is to distinguish between mobile bearing and fixed bearing posterior stabilized knee prostheses in the mechanics performance using the finite element simulation. Quantifying the relative mechanics attributes and survivorship between the mobile bearing and the fixe...

Full description

Bibliographic Details
Main Authors: Hirokawa, S. (Author), Mohd Anuar, M.A (Author), Nagamine, R. (Author), Todo, M. (Author)
Format: Article
Language:English
Published: Hindawi Limited 2014
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 01985nam a2200277Ia 4500
001 10.1155-2014-586921
008 220112s2014 CNT 000 0 und d
020 |a 23566140 (ISSN) 
245 1 0 |a Dynamic finite element analysis of mobile bearing type knee prosthesis under deep flexional motion 
260 0 |b Hindawi Limited  |c 2014 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1155/2014/586921 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-84919397782&doi=10.1155%2f2014%2f586921&partnerID=40&md5=79dc34abe00f0bb240ed6e6abbd3a650 
520 3 |a The primary objective of this study is to distinguish between mobile bearing and fixed bearing posterior stabilized knee prostheses in the mechanics performance using the finite element simulation. Quantifying the relative mechanics attributes and survivorship between the mobile bearing and the fixed bearing prosthesis remains in investigation among researchers. In the present study, 3-dimensional computational model of a clinically used mobile bearing PS type knee prosthesis was utilized to develop a finite element and dynamic simulation model. Combination of displacement and force driven knee motion was adapted to simulate a flexion motion from 0° to 135° with neutral, 10°, and 20° internal tibial rotation to represent deep knee bending. Introduction of the secondary moving articulation in the mobile bearing knee prosthesis has been found to maintain relatively low shear stress during deep knee motion with tibial rotation. © 2014 Mohd Afzan Mohd Anuar et al. 
650 0 4 |a Article 
650 0 4 |a contact stress 
650 0 4 |a finite element analysis 
650 0 4 |a force 
650 0 4 |a knee prosthesis 
650 0 4 |a mobile bearing knee prosthesis 
650 0 4 |a rotation 
650 0 4 |a shear stress 
700 1 0 |a Hirokawa, S.  |e author 
700 1 0 |a Mohd Anuar, M.A.  |e author 
700 1 0 |a Nagamine, R.  |e author 
700 1 0 |a Todo, M.  |e author 
773 |t Scientific World Journal