Ultrafine Bi Nanoparticles Confined in Hydrothermal Carbon-Modified Carbon Nanotubes for Highly Efficient CO2Electroreduction to Formate

Electroreduction of carbon dioxide (CO2) into formate is a sustainable and promising approach to solve the greenhouse effect. Herein, ultrafine Bi nanoparticles (Bi NPs) with a diameter of around 3.4 nm on hydrothermal carbons-modified carbon nanotubes were successfully obtained via dip-coating meth...

Full description

Bibliographic Details
Main Authors: Ma, X. (Author), Yang, F. (Author), Zhang, D. (Author), Zhang, W. (Author)
Format: Article
Language:English
Published: Institute of Physics 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02524nam a2200385Ia 4500
001 10.1149-1945-7111-ac6703
008 220517s2022 CNT 000 0 und d
020 |a 00134651 (ISSN) 
245 1 0 |a Ultrafine Bi Nanoparticles Confined in Hydrothermal Carbon-Modified Carbon Nanotubes for Highly Efficient CO2Electroreduction to Formate 
260 0 |b Institute of Physics  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1149/1945-7111/ac6703 
520 3 |a Electroreduction of carbon dioxide (CO2) into formate is a sustainable and promising approach to solve the greenhouse effect. Herein, ultrafine Bi nanoparticles (Bi NPs) with a diameter of around 3.4 nm on hydrothermal carbons-modified carbon nanotubes were successfully obtained via dip-coating method, and could be used as an effective catalyst for electroreduction of CO2 into formate. As a result, the as-prepared catalyst exhibited an outstanding CO2 reduction performance with a faradaic efficiency of 94.8% and a higher current density of 17.8 mA cm-2. The high selectivity could maintain over a wide potential range of 400 mV, together with satisfactory durability for more than 24 h. Electrochemical results and density functional theory (DFT) calculation showed that the rich intrinsic active sites of Bi could effectively adsorb CO2 molecules and promote the CO2(ads) intermediate to form the CO2- intermediate, and resulting in the higher intrinsic activity of the CO2 reduction. Thus, our work demonstrated a synergistic effect between carbon supports and metal nanoparticles could broaden the activity and selectivity for CO2 electroreduction and offer useful perspectives to design efficient and low-cost electrocatalysts. © 2022 The Electrochemical Society ("ECS"). 
650 0 4 |a ]+ catalyst 
650 0 4 |a Carbon dioxide 
650 0 4 |a Carbon modified 
650 0 4 |a Carbon nanotubes 
650 0 4 |a CO2 reduction 
650 0 4 |a Density functional theory 
650 0 4 |a Design for testability 
650 0 4 |a Dipcoating methods 
650 0 4 |a Electro reduction 
650 0 4 |a Electrocatalysts 
650 0 4 |a Electrolytic reduction 
650 0 4 |a Electroreduction of CO2 
650 0 4 |a Greenhouse effect 
650 0 4 |a Hydrothermal carbons 
650 0 4 |a Metal nanoparticles 
650 0 4 |a Modified carbon 
650 0 4 |a Ultrafine 
650 0 4 |a Ultra-fines 
700 1 |a Ma, X.  |e author 
700 1 |a Yang, F.  |e author 
700 1 |a Zhang, D.  |e author 
700 1 |a Zhang, W.  |e author 
773 |t Journal of the Electrochemical Society