Ultra-Highly Sensitive DNA Detection with Conducting Polymer-Modified Electrodes: Mechanism, Manufacture and Prospects for Rapid e-PCR

At low copy number, sequence detection by polymerase chain reaction (PCR) requires up to 30 cycles (amplification 109) to produce a reliably detectable concentration of fluorescently-labelled amplicons. The cycle number and hence detection time is determined by the analytical sensitivity of the dete...

Full description

Bibliographic Details
Main Authors: Barker, D. (Author), Chan, E.W.C (Author), Evans, C.W (Author), Ghaus, Z.A (Author), Kerr-Philips, T. (Author), Travas-Sejdic, J. (Author), Williams, D.E (Author), Zhu, B. (Author)
Format: Article
Language:English
Published: IOP Publishing Ltd 2022
Subjects:
DNA
Online Access:View Fulltext in Publisher
LEADER 02885nam a2200457Ia 4500
001 10.1149-1945-7111-ac5ced
008 220425s2022 CNT 000 0 und d
020 |a 00134651 (ISSN) 
245 1 0 |a Ultra-Highly Sensitive DNA Detection with Conducting Polymer-Modified Electrodes: Mechanism, Manufacture and Prospects for Rapid e-PCR 
260 0 |b IOP Publishing Ltd  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1149/1945-7111/ac5ced 
520 3 |a At low copy number, sequence detection by polymerase chain reaction (PCR) requires up to 30 cycles (amplification 109) to produce a reliably detectable concentration of fluorescently-labelled amplicons. The cycle number and hence detection time is determined by the analytical sensitivity of the detector. Hybridisation of complementary DNA strands to oligonucleotide-modified conducting polymer electrodes yields an increase in the charge transfer resistance for the ferri-ferrocyanide redox couple. We demonstrate sensors using screen-printed carbon electrodes modified with a conducting polymer formed from a monomer prefunctionalised with complementary oligonucleotide, with pM sensitivity for short sequences and aM for bacterial lysate, with a response time-scale of 5 min. The response is due to the variation of electrical resistance within the polymer film. We develop a mechanism based on repulsion from the solution interface of dopant anions by the charge associated with surface-bound DNA. With results for >160 single-use sensors, we formulate a response model based on percolation within a random resistor network and highlight challenges for large-scale manufacture of such sensors. Such sensors used for label-free electrochemical detection for PCR (e-PCR) would decrease the required cycle number from 30 to less than 10 and would offer a much simplified instrument construction. © 2022 The Electrochemical Society ("ECS"). 
650 0 4 |a Amplicons 
650 0 4 |a Charge transfer 
650 0 4 |a Chemical detection 
650 0 4 |a Conducting polymers 
650 0 4 |a Copy number 
650 0 4 |a Cycle number 
650 0 4 |a Detection time 
650 0 4 |a DNA 
650 0 4 |a DNA detection 
650 0 4 |a ELectrochemical detection 
650 0 4 |a Electrode mechanism 
650 0 4 |a Electrodes 
650 0 4 |a Hybridisation 
650 0 4 |a Oligonucleotides 
650 0 4 |a Polymer films 
650 0 4 |a Polymer modified electrodes 
650 0 4 |a Polymerase chain reaction 
650 0 4 |a Semiconducting films 
650 0 4 |a Sequence detection 
650 0 4 |a Solvents 
700 1 |a Barker, D.  |e author 
700 1 |a Chan, E.W.C.  |e author 
700 1 |a Evans, C.W.  |e author 
700 1 |a Ghaus, Z.A.  |e author 
700 1 |a Kerr-Philips, T.  |e author 
700 1 |a Travas-Sejdic, J.  |e author 
700 1 |a Williams, D.E.  |e author 
700 1 |a Zhu, B.  |e author 
773 |t Journal of the Electrochemical Society