Adaptive Thiele interpolation

The current implementation of Thiele rational interpolation in Maple (the Thieleinterpolation routine) breaks down when the points are not well-ordered. In this article, it is shown how this breakdown can be avoided by ordering the interpolation points in an adaptive way. © 2023 Copyright is held by...

Full description

Bibliographic Details
Main Author: Celis, O.S (Author)
Format: Article
Language:English
Published: Association for Computing Machinery 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 01117nam a2200217Ia 4500
001 10.1145-3594252.3594254
008 230529s2023 CNT 000 0 und d
020 |a 19322232 (ISSN) 
245 1 0 |a Adaptive Thiele interpolation 
260 0 |b Association for Computing Machinery  |c 2023 
300 |a 6 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1145/3594252.3594254 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159189714&doi=10.1145%2f3594252.3594254&partnerID=40&md5=fd268a8e356b9915817abb46c06d525c 
520 3 |a The current implementation of Thiele rational interpolation in Maple (the Thieleinterpolation routine) breaks down when the points are not well-ordered. In this article, it is shown how this breakdown can be avoided by ordering the interpolation points in an adaptive way. © 2023 Copyright is held by the owner/author(s). 
650 0 4 |a Break down 
650 0 4 |a 'current 
650 0 4 |a Interpolation 
650 0 4 |a Interpolation points 
650 0 4 |a Rational interpolation 
700 1 0 |a Celis, O.S.  |e author 
773 |t ACM Communications in Computer Algebra