HRBF-Fusion: Accurate 3D Reconstruction from RGB-D Data Using On-the-fly Implicits

Reconstruction of high-fidelity 3D objects or scenes is a fundamental research problem. Recent advances in RGB-D fusion have demonstrated the potential of producing 3D models from consumer-level RGB-D cameras. However, due to the discrete nature and limited resolution of their surface representation...

Full description

Bibliographic Details
Main Authors: Nan, L. (Author), Wang, C.C.L (Author), Wang, J. (Author), Xu, Y. (Author), Zhou, L. (Author)
Format: Article
Language:English
Published: Association for Computing Machinery 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02743nam a2200433Ia 4500
001 10.1145-3516521
008 220718s2022 CNT 000 0 und d
020 |a 07300301 (ISSN) 
245 1 0 |a HRBF-Fusion: Accurate 3D Reconstruction from RGB-D Data Using On-the-fly Implicits 
260 0 |b Association for Computing Machinery  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1145/3516521 
520 3 |a Reconstruction of high-fidelity 3D objects or scenes is a fundamental research problem. Recent advances in RGB-D fusion have demonstrated the potential of producing 3D models from consumer-level RGB-D cameras. However, due to the discrete nature and limited resolution of their surface representations (e.g., point or voxel based), existing approaches suffer from the accumulation of errors in camera tracking and distortion in the reconstruction, which leads to an unsatisfactory 3D reconstruction. In this article, we present a method using on-the-fly implicits of Hermite Radial Basis Functions (HRBFs) as a continuous surface representation for camera tracking in an existing RGB-D fusion framework. Furthermore, curvature estimation and confidence evaluation are coherently derived from the inherent surface properties of the on-the-fly HRBF implicits, which are devoted to a data fusion with better quality. We argue that our continuous but on-the-fly surface representation can effectively mitigate the impact of noise with its robustness and constrain the reconstruction with inherent surface smoothness when being compared with discrete representations. Experimental results on various real-world and synthetic datasets demonstrate that our HRBF-fusion outperforms the state-of-the-art approaches in terms of tracking robustness and reconstruction accuracy. © 2022 Association for Computing Machinery. 
650 0 4 |a 3D reconstruction 
650 0 4 |a Base function 
650 0 4 |a camera tracking 
650 0 4 |a Camera tracking 
650 0 4 |a Cameras 
650 0 4 |a Closed form 
650 0 4 |a Closed-form hermite radial base function 
650 0 4 |a closed-form HRBFs 
650 0 4 |a Computer vision 
650 0 4 |a Data fusion 
650 0 4 |a fusion 
650 0 4 |a Hermite 
650 0 4 |a High-fidelity 
650 0 4 |a Image reconstruction 
650 0 4 |a Radial basis 
650 0 4 |a Radial basis function networks 
650 0 4 |a registration 
650 0 4 |a Registration 
650 0 4 |a Surface reconstruction 
650 0 4 |a Surface representation 
650 0 4 |a Three dimensional computer graphics 
700 1 |a Nan, L.  |e author 
700 1 |a Wang, C.C.L.  |e author 
700 1 |a Wang, J.  |e author 
700 1 |a Xu, Y.  |e author 
700 1 |a Zhou, L.  |e author 
773 |t ACM Transactions on Graphics  |x 07300301 (ISSN)  |g 41 3