Experimental search for high-performance ferroelectric tunnel junctions guided by machine learning

Ferroelectric tunnel junction (FTJ) has attracted considerable attention for its potential applications in nonvolatile memory and neuromorphic computing. However, the experimental exploration of FTJs with high ON/OFF ratios is a challenging task due to the vast search space comprising of ferroelectr...

Full description

Bibliographic Details
Main Authors: Chen, D. (Author), Fan, Z. (Author), Gao, X. (Author), Guo, H. (Author), Hou, Z. (Author), Huang, Q. (Author), Liu, J.-M (Author), Lu, X. (Author), Luo, Y. (Author), Qin, M. (Author), Rao, J. (Author), Tian, G. (Author), Yan, X. (Author), Zeng, M. (Author), Zhang, X. (Author), Zhou, G. (Author)
Format: Article
Language:English
Published: World Scientific 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02620nam a2200361Ia 4500
001 10.1142-S2010135X22500059
008 220630s2022 CNT 000 0 und d
020 |a 2010135X (ISSN) 
245 1 0 |a Experimental search for high-performance ferroelectric tunnel junctions guided by machine learning 
260 0 |b World Scientific  |c 2022 
520 3 |a Ferroelectric tunnel junction (FTJ) has attracted considerable attention for its potential applications in nonvolatile memory and neuromorphic computing. However, the experimental exploration of FTJs with high ON/OFF ratios is a challenging task due to the vast search space comprising of ferroelectric and electrode materials, fabrication methods and conditions and so on. Here, machine learning (ML) is demonstrated to be an effective tool to guide the experimental search of FTJs with high ON/OFF ratios. A dataset consisting of 152 FTJ samples with nine features and one target attribute (i.e., ON/OFF ratio) is established for ML modeling. Among various ML models, the gradient boosting classification model achieves the highest prediction accuracy. Combining the feature importance analysis based on this model with the association rule mining, it is extracted that the utilizations of {graphene/graphite (Gra) (top), LaNiO3 (LNO) (bottom)} and {Gra (top), Ca0.96Ce0.04MnO3 (CCMO) (bottom)} electrode pairs are likely to result in high ON/OFF ratios in FTJs. Moreover, two previously unexplored FTJs: Gra/BaTiO3 (BTO)/LNO and Gra/BTO/CCMO, are predicted to achieve ON/OFF ratios higher than 1000. Guided by the ML predictions, the Gra/BTO/LNO and Gra/BTO/CCMO FTJs are experimentally fabricated, which unsurprisingly exhibit ≥1000 ON/OFF ratios (∼8540 and ∼7890, respectively). This study demonstrates a new paradigm of developing high-performance FTJs by using ML. © 2022 The Author(s). 
650 0 4 |a ferroelectric tunnel junctions 
650 0 4 |a Machine learning 
650 0 4 |a nonvolatile memory 
650 0 4 |a ON/OFF ratio 
700 1 0 |a Chen, D.  |e author 
700 1 0 |a Fan, Z.  |e author 
700 1 0 |a Gao, X.  |e author 
700 1 0 |a Guo, H.  |e author 
700 1 0 |a Hou, Z.  |e author 
700 1 0 |a Huang, Q.  |e author 
700 1 0 |a Liu, J.-M.  |e author 
700 1 0 |a Lu, X.  |e author 
700 1 0 |a Luo, Y.  |e author 
700 1 0 |a Qin, M.  |e author 
700 1 0 |a Rao, J.  |e author 
700 1 0 |a Tian, G.  |e author 
700 1 0 |a Yan, X.  |e author 
700 1 0 |a Zeng, M.  |e author 
700 1 0 |a Zhang, X.  |e author 
700 1 0 |a Zhou, G.  |e author 
773 |t Journal of Advanced Dielectrics 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1142/S2010135X22500059