Baseline gut metagenomic functional gene signature associated with variable weight loss responses following a healthy lifestyle intervention in humans

Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to weight loss interventions. However, the functional determinants underlying this phenomenon remain unclear. We report a weight loss response analysis on a cohort of 105 indi...

Full description

Bibliographic Details
Main Authors: Diener, C. (Author), Gibbons, S.M (Author), Hood, L. (Author), Lovejoy, J.C (Author), Magis, A.T (Author), Patwardhan, S. (Author), Price, N.D (Author), Qin, S. (Author), Tang, L. (Author), Zhou, Y. (Author)
Format: Article
Language:English
Published: American Society for Microbiology 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03726nam a2200709Ia 4500
001 10.1128-mSystems.00964-21
008 220427s2021 CNT 000 0 und d
020 |a 23795077 (ISSN) 
245 1 0 |a Baseline gut metagenomic functional gene signature associated with variable weight loss responses following a healthy lifestyle intervention in humans 
260 0 |b American Society for Microbiology  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1128/mSystems.00964-21 
520 3 |a Recent human feeding studies have shown how the baseline taxonomic composition of the gut microbiome can determine responses to weight loss interventions. However, the functional determinants underlying this phenomenon remain unclear. We report a weight loss response analysis on a cohort of 105 individuals selected from a larger population enrolled in a commercial wellness program, which included healthy lifestyle coaching. Each individual in the cohort had baseline blood metabolomics, blood proteomics, clinical labs, dietary questionnaires, stool 16S rRNA gene sequencing data, and follow-up data on weight change. We generated additional targeted proteomics data on obesity-associated proteins in blood before and after intervention, along with baseline stool metagenomic data, for a subset of 25 individuals who showed the most extreme weight change phenotypes. We built regression models to identify baseline blood, stool, and dietary features associated with weight loss, independent of age, sex, and baseline body mass index (BMI). Many features were independently associated with baseline BMI, but few were independently associated with weight loss. Baseline diet was not associated with weight loss, and only one blood analyte was associated with changes in weight. However, 31 baseline stool metagenomic functional features, including complex polysaccharide and protein degradation genes, stress-response genes, respiration-related genes, and cell wall synthesis genes, along with gut bacterial replication rates, were associated with weight loss responses after controlling for age, sex, and baseline BMI. Together, these results provide a set of compelling hypotheses for how commensal gut microbiota influence weight loss outcomes in humans. © 2021 Diener et al. 
650 0 4 |a adult 
650 0 4 |a amylase 
650 0 4 |a Amylase 
650 0 4 |a Article 
650 0 4 |a bacterial growth 
650 0 4 |a bacterial microbiome 
650 0 4 |a body mass 
650 0 4 |a body weight loss 
650 0 4 |a caloric intake 
650 0 4 |a cohort analysis 
650 0 4 |a commensal 
650 0 4 |a Diet 
650 0 4 |a follow up 
650 0 4 |a functional genomics 
650 0 4 |a gene sequence 
650 0 4 |a growth rate 
650 0 4 |a Health 
650 0 4 |a healthy lifestyle 
650 0 4 |a human 
650 0 4 |a immunomodulation 
650 0 4 |a intestine flora 
650 0 4 |a metabolome 
650 0 4 |a Metabolome 
650 0 4 |a metabolomics 
650 0 4 |a Metagenome 
650 0 4 |a metagenomics 
650 0 4 |a Microbiome 
650 0 4 |a nonhuman 
650 0 4 |a Obesity 
650 0 4 |a phenotype 
650 0 4 |a polysaccharide 
650 0 4 |a protein degradation 
650 0 4 |a proteome 
650 0 4 |a Proteome 
650 0 4 |a proteomics 
650 0 4 |a Replication rate 
650 0 4 |a RNA 16S 
650 0 4 |a taxonomy 
650 0 4 |a Weight loss 
700 1 |a Diener, C.  |e author 
700 1 |a Gibbons, S.M.  |e author 
700 1 |a Hood, L.  |e author 
700 1 |a Lovejoy, J.C.  |e author 
700 1 |a Magis, A.T.  |e author 
700 1 |a Patwardhan, S.  |e author 
700 1 |a Price, N.D.  |e author 
700 1 |a Qin, S.  |e author 
700 1 |a Tang, L.  |e author 
700 1 |a Zhou, Y.  |e author 
773 |t mSystems