Dynamic imaging of a capillary-gravity wave in shallow water using amplitude variations of eigenbeams

Dynamic acoustic imaging of a surface wave propagating at an air-water interface is a complex task that is investigated here at the laboratory scale through an ultrasonic experiment in a shallow water waveguide. Using a double beamforming algorithm between two source-receiver arrays, the authors iso...

Full description

Bibliographic Details
Main Authors: Arrigoni, M. (Author), Bonnel, J. (Author), Kerampran, S. (Author), Mars, J.I (Author), Nicolas, B. (Author), Roux, P. (Author), Van Baarsel, T. (Author)
Format: Article
Language:English
Published: Acoustical Society of America 2019
Subjects:
Air
Online Access:View Fulltext in Publisher
LEADER 02685nam a2200433Ia 4500
001 10.1121-1.5132939
008 220511s2019 CNT 000 0 und d
020 |a 00014966 (ISSN) 
245 1 0 |a Dynamic imaging of a capillary-gravity wave in shallow water using amplitude variations of eigenbeams 
260 0 |b Acoustical Society of America  |c 2019 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1121/1.5132939 
520 3 |a Dynamic acoustic imaging of a surface wave propagating at an air-water interface is a complex task that is investigated here at the laboratory scale through an ultrasonic experiment in a shallow water waveguide. Using a double beamforming algorithm between two source-receiver arrays, the authors isolate and identify each multi-reverberated eigenbeam that interacts with the air-water and bottom interfaces. The waveguide transfer matrix is recorded 100 times per second while a low-amplitude gravity wave is generated by laser-induced breakdown at the middle of the waveguide, just above the water surface. The controlled, and therefore repeatable, breakdown results in a blast wave that interacts with the air-water interface, which creates ripples at the surface that propagate in both directions. The amplitude perturbations of each ultrasonic eigenbeam are measured during the propagation of the gravity-capillary wave. Inversion of the surface deformation is performed from the amplitude variations of the eigenbeams using a diffraction-based sensitivity kernel approach. The accurate ultrasonic imaging of the displacement of the air-water interface is compared to simultaneous measurements with an optical camera, which provides independent validation. © 2019 Acoustical Society of America. 
650 0 4 |a Acoustic wave propagation 
650 0 4 |a Acoustics 
650 0 4 |a Air 
650 0 4 |a Amplitude perturbation 
650 0 4 |a Beamforming algorithms 
650 0 4 |a Capillary-gravity waves 
650 0 4 |a Explosives 
650 0 4 |a Gravity capillary waves 
650 0 4 |a Gravity waves 
650 0 4 |a Laser induced breakdown 
650 0 4 |a Phase interfaces 
650 0 4 |a Sensitivity analysis 
650 0 4 |a Shallow water waveguide 
650 0 4 |a Simultaneous measurement 
650 0 4 |a Surface waves 
650 0 4 |a Transfer matrix method 
650 0 4 |a Ultrasonic experiments 
650 0 4 |a Ultrasonic imaging 
650 0 4 |a Waveguides 
700 1 |a Arrigoni, M.  |e author 
700 1 |a Bonnel, J.  |e author 
700 1 |a Kerampran, S.  |e author 
700 1 |a Mars, J.I.  |e author 
700 1 |a Nicolas, B.  |e author 
700 1 |a Roux, P.  |e author 
700 1 |a Van Baarsel, T.  |e author 
773 |t Journal of the Acoustical Society of America