Imaging the vasculature of a beating heart by dynamic speckle: the challenge of a quasiperiodic motion

The spatial and temporal evolution of the field backscattered by a beating heart while illuminated with a coherent light reveals its macro- and microvascularization in real time. To perform these vascularization images, we use a recently published method of laser speckle imaging, based on the select...

Full description

Bibliographic Details
Main Authors: Akamkam, A. (Author), Colin, E. (Author), Guihaire, J. (Author), Orlik, X. (Author), Plyer, A. (Author)
Format: Article
Language:English
Published: SPIE 2023
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02804nam a2200589Ia 4500
001 10.1117-1.JBO.28.4.046007
008 230526s2023 CNT 000 0 und d
020 |a 10833668 (ISSN) 
245 1 0 |a Imaging the vasculature of a beating heart by dynamic speckle: the challenge of a quasiperiodic motion 
260 0 |b SPIE  |c 2023 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1117/1.JBO.28.4.046007 
520 3 |a The spatial and temporal evolution of the field backscattered by a beating heart while illuminated with a coherent light reveals its macro- and microvascularization in real time. To perform these vascularization images, we use a recently published method of laser speckle imaging, based on the selective detection of spatially depolarized speckle field that is mainly generated by multiple scattering. We consider the calculation of the speckle contrast, by a spatial or temporal estimation. We show that the signal-to-noise ratio of the observed vascular structure can be noticeably increased by a postprocessing method implying the calculation of a motion field that allows the selection of similar frames extracted from different heartbeat periods. This later optimization reveals vascular microstructures with a spatial resolution of the order of 100 μm. © 2023 The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. 
650 0 4 |a algorithm 
650 0 4 |a Algorithms 
650 0 4 |a article 
650 0 4 |a Beating heart 
650 0 4 |a calculation 
650 0 4 |a cardiac imaging 
650 0 4 |a Cardiac imaging 
650 0 4 |a cardiology 
650 0 4 |a Contrast imaging 
650 0 4 |a diagnostic imaging 
650 0 4 |a Diagnostic Imaging 
650 0 4 |a dynamic speckle 
650 0 4 |a Dynamic speckle 
650 0 4 |a heart 
650 0 4 |a Heart 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a motion 
650 0 4 |a neovascularization (pathology) 
650 0 4 |a Neovascularization, Pathologic 
650 0 4 |a optic flow 
650 0 4 |a optical flow 
650 0 4 |a Optical flows 
650 0 4 |a Quasi-periodic motion 
650 0 4 |a signal noise ratio 
650 0 4 |a Signal to noise ratio 
650 0 4 |a Spatial evolution 
650 0 4 |a Speckle 
650 0 4 |a speckle contrast imaging 
650 0 4 |a Speckle contrast imaging 
650 0 4 |a Speckle contrasts 
650 0 4 |a Temporal evolution 
650 0 4 |a vascularization 
650 0 4 |a Vasculature 
700 1 0 |a Akamkam, A.  |e author 
700 1 0 |a Colin, E.  |e author 
700 1 0 |a Guihaire, J.  |e author 
700 1 0 |a Orlik, X.  |e author 
700 1 0 |a Plyer, A.  |e author 
773 |t Journal of Biomedical Optics  |x 10833668 (ISSN)  |g 28 4