Task-oriented Explainable Semantic Communications

Semantic communications utilize the transceiver computing resources to alleviate scarce transmission resources, such as bandwidth and energy. Although the conventional deep learning (DL) based designs may achieve certain transmission efficiency, the uninterpretability issue of extracted features is...

Full description

Bibliographic Details
Main Authors: Al-Dhahir, N. (Author), Gao, D. (Author), Li, H. (Author), Li, S. (Author), Ma, S. (Author), Qiao, W. (Author), Shi, G. (Author), Shi, Y. (Author), Wu, Y. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
Description
Summary:Semantic communications utilize the transceiver computing resources to alleviate scarce transmission resources, such as bandwidth and energy. Although the conventional deep learning (DL) based designs may achieve certain transmission efficiency, the uninterpretability issue of extracted features is the major challenge in the development of semantic communications. In this paper, we propose an explainable and robust semantic communication framework by incorporating the well-established bit-level communication system, which not only extracts and disentangles features into independent and semantically interpretable features, but also only selects task-relevant features for transmission, instead of all extracted features. Based on this framework, we derive the optimal input for rate-distortion-perception theory, and derive both lower and upper bounds on the semantic channel capacity. Furthermore, based on the β-variational autoencoder (β-VAE), we propose a practical explainable semantic communication system design, which simultaneously achieves semantic features selection and is robust against semantic channel noise. We further design a real-time wireless mobile semantic communication proof-of-concept prototype. Our simulations and experiments demonstrate that our proposed explainable semantic communications system can significantly improve transmission efficiency, and also verify the effectiveness of our proposed robust semantic transmission scheme. IEEE
Physical Description:1
ISBN:15361276 (ISSN)
DOI:10.1109/TWC.2023.3269444