Estimation of Covariance Matrix of Interference for Secure Spatial Modulation against a Malicious Full-duplex Attacker

In secure spatial modulation with a malicious full-duplex attacker, how to obtain the interference subspace or channel state information (CSI) is very important for Bob to reduce or even completely cancel the interference from Mallory. In this paper, different from existing work with perfect CSI, th...

Full description

Bibliographic Details
Main Authors: Jiang, X. (Author), Shu, F. (Author), Wang, J. (Author), Yang, L. (Author), Zhang, W. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03087nam a2200541Ia 4500
001 10.1109-TVT.2022.3172989
008 220630s2022 CNT 000 0 und d
020 |a 00189545 (ISSN) 
245 1 0 |a Estimation of Covariance Matrix of Interference for Secure Spatial Modulation against a Malicious Full-duplex Attacker 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
520 3 |a In secure spatial modulation with a malicious full-duplex attacker, how to obtain the interference subspace or channel state information (CSI) is very important for Bob to reduce or even completely cancel the interference from Mallory. In this paper, different from existing work with perfect CSI, the covariance matrix of malicious interference (CMMI) from Mallory is estimated to construct the interference subspace. To improve the estimation accuracy, a CMMI rank detector relying on the Akaike information criterion (AIC) is derived first. To achieve a high-precision CMMI estimation, two methods, principal component analysis-eigenvalue decomposition (PCA-EVD) and joint diagonalization (JD) are proposed. The proposed PCA-EVD is a rank deduction method whereas the JD method is a joint optimization method with improved performance in the low jamming-to-noise ratio (JNR) region at the expense of increased complexity. Simulation results show that the proposed PCA-EVD performs much better than existing methods like sample estimated covariance matrix (SCM) and EVD in terms of normalized mean square error (NMSE) and secrecy rate (SR). Additionally, the proposed JD has achieved a better NMSE performance than PCA-EVD in the low JNR region (JNR<formula><tex>  |\ leq   |< /tex></formula>0dB) while the proposed PCA-EVD performs better than JD in the high JNR region. IEEE 
650 0 4 |a Channel state information 
650 0 4 |a Covariance matrices 
650 0 4 |a Covariance matrices 
650 0 4 |a Covariance matrix 
650 0 4 |a covariance matrix estimation 
650 0 4 |a Covariance matrix estimation 
650 0 4 |a Eigen-value 
650 0 4 |a Eigenvalues and eigenfunctions 
650 0 4 |a Interference 
650 0 4 |a Interference 
650 0 4 |a Jamming 
650 0 4 |a Jamming 
650 0 4 |a Mean square error 
650 0 4 |a MIMO 
650 0 4 |a Modulation 
650 0 4 |a Modulation 
650 0 4 |a normalized mean square error 
650 0 4 |a Normalized mean square error 
650 0 4 |a Principal component analysis 
650 0 4 |a Principal-component analysis 
650 0 4 |a Receiving antennas 
650 0 4 |a Receiving antennas 
650 0 4 |a secrecy rate 
650 0 4 |a Secrecy rate 
650 0 4 |a Spatial modulation 
650 0 4 |a Spatial modulations 
650 0 4 |a Symbol 
650 0 4 |a Symbols 
650 0 4 |a Transmitting antenna 
650 0 4 |a Transmitting antennas 
700 1 0 |a Jiang, X.  |e author 
700 1 0 |a Shu, F.  |e author 
700 1 0 |a Wang, J.  |e author 
700 1 0 |a Yang, L.  |e author 
700 1 0 |a Zhang, W.  |e author 
773 |t IEEE Transactions on Vehicular Technology 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/TVT.2022.3172989