Energy-Based Continuous Inverse Optimal Control

The problem of continuous inverse optimal control (over finite time horizon) is to learn the unknown cost function over the sequence of continuous control variables from expert demonstrations. In this article, we study this fundamental problem in the framework of energy-based model (EBM), where the...

Full description

Bibliographic Details
Main Authors: Baker, C. (Author), Wu, Y.N (Author), Xie, J. (Author), Xu, Y. (Author), Zhao, T. (Author), Zhao, Y. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03458nam a2200601Ia 4500
001 10.1109-TNNLS.2022.3168795
008 220630s2022 CNT 000 0 und d
020 |a 2162237X (ISSN) 
245 1 0 |a Energy-Based Continuous Inverse Optimal Control 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
520 3 |a The problem of continuous inverse optimal control (over finite time horizon) is to learn the unknown cost function over the sequence of continuous control variables from expert demonstrations. In this article, we study this fundamental problem in the framework of energy-based model (EBM), where the observed expert trajectories are assumed to be random samples from a probability density function defined as the exponential of the negative cost function up to a normalizing constant. The parameters of the cost function are learned by maximum likelihood via an ``analysis by synthesis'' scheme, which iterates: 1) synthesis step: sample the synthesized trajectories from the current probability density using the Langevin dynamics via backpropagation through time and 2) analysis step: update the model parameters based on the statistical difference between the synthesized trajectories and the observed trajectories. Given the fact that an efficient optimization algorithm is usually available for an optimal control problem, we also consider a convenient approximation of the above learning method, where we replace the sampling in the synthesis step by optimization. Moreover, to make the sampling or optimization more efficient, we propose to train the EBM simultaneously with a top-down trajectory generator via cooperative learning, where the trajectory generator is used to fast initialize the synthesis step of the EBM. We demonstrate the proposed methods on autonomous driving tasks and show that they can learn suitable cost functions for optimal control. IEEE 
650 0 4 |a Approximation algorithms 
650 0 4 |a Autonomous vehicles 
650 0 4 |a Autonomous Vehicles 
650 0 4 |a Cooperative learning 
650 0 4 |a Cooperative learning 
650 0 4 |a Cost benefit analysis 
650 0 4 |a Cost function 
650 0 4 |a Cost functions 
650 0 4 |a Cost-function 
650 0 4 |a Costs 
650 0 4 |a Energy-based model 
650 0 4 |a Energy-based models 
650 0 4 |a energy-based models (EBMs) 
650 0 4 |a Generator 
650 0 4 |a Generators 
650 0 4 |a Heuristic algorithms 
650 0 4 |a Heuristic algorithms 
650 0 4 |a Heuristics algorithm 
650 0 4 |a Inverse optimal control 
650 0 4 |a inverse optimal control (IOC) 
650 0 4 |a Inverse problems 
650 0 4 |a Inverse-optimal control 
650 0 4 |a Langevin dynamic. 
650 0 4 |a Langevin dynamics 
650 0 4 |a Langevin dynamics. 
650 0 4 |a Maximum likelihood estimation 
650 0 4 |a Maximum likelihood estimation 
650 0 4 |a Maximum-likelihood estimation 
650 0 4 |a Optimal control 
650 0 4 |a Optimal control systems 
650 0 4 |a Optimal controls 
650 0 4 |a Probability density function 
650 0 4 |a Trajectories 
650 0 4 |a Trajectory 
700 1 0 |a Baker, C.  |e author 
700 1 0 |a Wu, Y.N.  |e author 
700 1 0 |a Xie, J.  |e author 
700 1 0 |a Xu, Y.  |e author 
700 1 0 |a Zhao, T.  |e author 
700 1 0 |a Zhao, Y.  |e author 
773 |t IEEE Transactions on Neural Networks and Learning Systems 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/TNNLS.2022.3168795