Bayesian Automatic Relevance Determination for Utility Function Specification in Discrete Choice Models

Specifying utility functions is a key step towards applying the discrete choice framework for understanding the behaviour processes that govern user choices. However, identifying the utility function specifications that best model and explain the observed choices can be a very challenging and time-c...

Full description

Bibliographic Details
Main Authors: Bierlaire, M. (Author), Ortelli, N. (Author), Pereira, F.C (Author), Rodrigues, F. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02709nam a2200409Ia 4500
001 10.1109-TITS.2020.3031965
008 220425s2022 CNT 000 0 und d
020 |a 15249050 (ISSN) 
245 1 0 |a Bayesian Automatic Relevance Determination for Utility Function Specification in Discrete Choice Models 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/TITS.2020.3031965 
520 3 |a Specifying utility functions is a key step towards applying the discrete choice framework for understanding the behaviour processes that govern user choices. However, identifying the utility function specifications that best model and explain the observed choices can be a very challenging and time-consuming task. This paper seeks to help modellers by leveraging the Bayesian framework and the concept of automatic relevance determination (ARD), in order to automatically determine an optimal utility function specification from an exponentially large set of possible specifications in a purely data-driven manner. Based on recent advances in approximate Bayesian inference, a doubly stochastic variational inference is developed, which allows the proposed MNL-ARD model to scale to very large and high-dimensional datasets. Using semi-artificial choice data, the proposed approach is shown to be able to accurately recover the true utility function specifications that govern the observed choices. Moreover, when applied to real choice data, MNL-ARD is able discover high quality specifications that can outperform previous ones from the literature according to multiple criteria, thereby demonstrating its practical applicability. © 2000-2011 IEEE. 
650 0 4 |a automatic relevance determination 
650 0 4 |a Automatic relevance determination 
650 0 4 |a automatic utility specification 
650 0 4 |a Automatic utility specification 
650 0 4 |a Bayesian 
650 0 4 |a Bayesian networks 
650 0 4 |a Discrete choice 
650 0 4 |a Discrete choice models 
650 0 4 |a Discrete choice models 
650 0 4 |a Doubly stochastic 
650 0 4 |a doubly stochastic variational inference 
650 0 4 |a Doubly stochastic variational inference 
650 0 4 |a Function specification 
650 0 4 |a Inference engines 
650 0 4 |a Large dataset 
650 0 4 |a Specifications 
650 0 4 |a Stochastic models 
650 0 4 |a Stochastic systems 
650 0 4 |a Utility functions 
650 0 4 |a Variational inference 
700 1 |a Bierlaire, M.  |e author 
700 1 |a Ortelli, N.  |e author 
700 1 |a Pereira, F.C.  |e author 
700 1 |a Rodrigues, F.  |e author 
773 |t IEEE Transactions on Intelligent Transportation Systems