An Unsupervised Deep Unfolding Framework for Robust Symbol Level Precoding

Symbol Level Precoding (SLP) has attracted significant research interest due to its ability to exploit interference for energy-efficient transmission. This paper proposes an unsupervised deep-neural network (DNN) based SLP framework. Instead of naively training a DNN architecture for SLP without con...

Full description

Bibliographic Details
Main Authors: Andreopoulos, Y. (Author), Masouros, C. (Author), Mohammad, A. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02242nam a2200325Ia 4500
001 10.1109-OJCOMS.2023.3270455
008 230529s2023 CNT 000 0 und d
020 |a 2644125X (ISSN) 
245 1 0 |a An Unsupervised Deep Unfolding Framework for Robust Symbol Level Precoding 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2023 
300 |a 1 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/OJCOMS.2023.3270455 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159690964&doi=10.1109%2fOJCOMS.2023.3270455&partnerID=40&md5=a7921729a448615044a4480e708c07a3 
520 3 |a Symbol Level Precoding (SLP) has attracted significant research interest due to its ability to exploit interference for energy-efficient transmission. This paper proposes an unsupervised deep-neural network (DNN) based SLP framework. Instead of naively training a DNN architecture for SLP without considering the specifics of the optimization objective of the SLP domain, our proposal unfolds a power minimization SLP formulation based on the interior point method (IPM) proximal ‘log’ barrier function. Furthermore, we extend our proposal to a robust precoding design under channel state information (CSI) uncertainty. The results show that our proposed learning framework provides near-optimal performance while reducing the computational cost from O(n7.5) to O(n3) for the symmetrical system case where n=numberoftransmitantennas=numberofusers. This significant complexity reduction is also reflected in a proportional decrease in the proposed approach’s execution time compared to the SLP optimization-based solution. Author 
650 0 4 |a Array signal processing 
650 0 4 |a Constructive Interference 
650 0 4 |a Deep Neural Networks 
650 0 4 |a Downlink 
650 0 4 |a downlink beamforming 
650 0 4 |a Interference 
650 0 4 |a Minimization 
650 0 4 |a Optimization 
650 0 4 |a power minimization 
650 0 4 |a Precoding 
650 0 4 |a Symbol level precoding 
650 0 4 |a Symbols 
700 1 0 |a Andreopoulos, Y.  |e author 
700 1 0 |a Masouros, C.  |e author 
700 1 0 |a Mohammad, A.  |e author 
773 |t IEEE Open Journal of the Communications Society