300-Gb/s Transmission Using OTDM System Implemented With Sinusoidally Modulated Input Light Source

The recently proposed 2-channel optical-time-division-multiplexing (OTDM) technique utilizing a sinusoidally modulated input light source provides an attractive solution to double the per-wavelength data rate of the short-reach intensity-modulation/direct-detection system. However, to maximize the t...

Full description

Bibliographic Details
Main Authors: Chung, Y.C (Author), Kim, B.G (Author), Kim, M.S (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02913nam a2200409Ia 4500
001 10.1109-LPT.2022.3185218
008 220718s2022 CNT 000 0 und d
020 |a 10411135 (ISSN) 
245 1 0 |a 300-Gb/s Transmission Using OTDM System Implemented With Sinusoidally Modulated Input Light Source 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/LPT.2022.3185218 
520 3 |a The recently proposed 2-channel optical-time-division-multiplexing (OTDM) technique utilizing a sinusoidally modulated input light source provides an attractive solution to double the per-wavelength data rate of the short-reach intensity-modulation/direct-detection system. However, to maximize the transmission speed of such an OTDM system, it is necessary to generate the sinusoidal input light operating at the frequency much faster than the modulator's bandwidth. As a result, the extinction ratio (ER) of the generated sinusoidal input light can be significantly reduced, which, in turn, causes a large crosstalk in this OTDM system. To solve this problem, we propose to enhance the ER of the sinusoidal input light simply by decreasing the bias voltage applied to the Mach-Zehnder modulator (MZM) used for its generation (from the quadrature point toward the null point). We estimate that, by using this technique, it is possible to increase the ER from 3.1 dB to 14.9 dB when the required sinusoidal frequency is three times faster than the MZM's bandwidth. To verify the effectiveness of this ER enhancement technique, we realize the 2-channel OTDM system with a sinusoidally modulated input light source by using the MZMs having a 3-dB bandwidth of 17.2 GHz and demonstrate the transmission of the 300-Gb/s PAM8 signal. Thus, the ratio between the achieved data rate and the 3-dB bandwidth of the MZM is as high as 17.4. © 1989-2012 IEEE. 
650 0 4 |a Bandwidth 
650 0 4 |a Crosstalk 
650 0 4 |a Input light 
650 0 4 |a Light modulation 
650 0 4 |a Light modulators 
650 0 4 |a Light sources 
650 0 4 |a Mach Zehnder modulator 
650 0 4 |a Mach-zehnde modulator 
650 0 4 |a Mach-Zehnder modulator (MZM) 
650 0 4 |a Optical crosstalk 
650 0 4 |a Optical signal processing 
650 0 4 |a Optical time division multiplexing systems 
650 0 4 |a Optical time-division multiplexing 
650 0 4 |a Optical time-division multiplexing (OTDM) 
650 0 4 |a Pulse amplitude modulation 
650 0 4 |a Pulse-amplitude modulation 
650 0 4 |a pulse-amplitude modulation (PAM) 
650 0 4 |a Sinusoidal input 
650 0 4 |a sinusoidally modulated input light source 
650 0 4 |a Sinusoidally modulated input light source 
650 0 4 |a Time division multiplexing 
700 1 |a Chung, Y.C.  |e author 
700 1 |a Kim, B.G.  |e author 
700 1 |a Kim, M.S.  |e author 
773 |t IEEE Photonics Technology Letters