Low-Power Detection and Classification for In-Sensor Predictive Maintenance Based on Vibration Monitoring

In this work, a new custom design of an anomaly detection and classification system is proposed. It is composed of a convolutional Auto-Encoder (AE) hardware design to perform anomaly detection which cooperates with a mixed HW/SW Convolutional Neural Network (CNN) to perform the classification of de...

Full description

Bibliographic Details
Main Authors: Benedetto, L.D (Author), De Vita, A. (Author), Licciardo, G.D (Author), Pau, D. (Author), Vitolo, P. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03089nam a2200493Ia 4500
001 10.1109-JSEN.2022.3154479
008 220425s2022 CNT 000 0 und d
020 |a 1530437X (ISSN) 
245 1 0 |a Low-Power Detection and Classification for In-Sensor Predictive Maintenance Based on Vibration Monitoring 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
300 |a 10 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JSEN.2022.3154479 
520 3 |a In this work, a new custom design of an anomaly detection and classification system is proposed. It is composed of a convolutional Auto-Encoder (AE) hardware design to perform anomaly detection which cooperates with a mixed HW/SW Convolutional Neural Network (CNN) to perform the classification of detected anomalies. The AE features a partial binarization, so that the weights are binarized while the activations, associated to some selected layers, are non-binarized. This has been necessary to meet the severe area and energy constraints that allow it to be integrated on the same die as the MEMS sensors for which it serves as a neural accelerator. The CNN shares the feature extraction module with the AE, whereas a SW classifier is triggered by the AE when a fault is detected, working asynchronously to it. The AE has been mapped on a Xilinx Artix-7 FPGA, featuring an Output Data Rate (ODR) of 365 kHz and achieving a power dissipation of   |3 33 \boldsymbol {\mu }   |  W/MHz. Logic synthesis has targeted TSMC CMOS 65 nm, 90 nm, and 130 nm standard cells. Best results achieved highlight a power consumption of   |1 38 \boldsymbol {\mu }   |  W/MHz with an area occupation of 0.49 mm2 when real-time operations are set. These results enable the integration of the complete neural accelerator in the CMOS circuitry that typically sits with the inertial MEMS on the same silicon die. Comparisons with the related works suggest that the proposed system is capable of state-of-the-art performances and accuracy. © 2001-2012 IEEE. 
650 0 4 |a Anomaly detection 
650 0 4 |a Anomaly detection 
650 0 4 |a Anomaly detection 
650 0 4 |a artificial intelligence 
650 0 4 |a Auto encoders 
650 0 4 |a autoencoder 
650 0 4 |a classification 
650 0 4 |a CMOS integrated circuits 
650 0 4 |a Computation theory 
650 0 4 |a Convolution 
650 0 4 |a Convolutional neural network 
650 0 4 |a Feature extraction 
650 0 4 |a Field programmable gate arrays (FPGA) 
650 0 4 |a FPGA 
650 0 4 |a in-sensor computing 
650 0 4 |a In-sensor computing 
650 0 4 |a Integrated circuit design 
650 0 4 |a Low Power 
650 0 4 |a Neural networks 
650 0 4 |a Power detection 
650 0 4 |a Sensor computing 
650 0 4 |a Sensors predictive maintenance 
650 0 4 |a Ultra-low power 
650 0 4 |a ultra-low-power 
650 0 4 |a Vibration monitoring 
700 1 |a Benedetto, L.D.  |e author 
700 1 |a De Vita, A.  |e author 
700 1 |a Licciardo, G.D.  |e author 
700 1 |a Pau, D.  |e author 
700 1 |a Vitolo, P.  |e author 
773 |t IEEE Sensors Journal