Markerless Gait Classification Employing 3D IR-UWB Physiological Motion Sensing

Human gait refers to the propulsion achieved by the effort of human limbs, a reflex progression resulting from the rhythmic reciprocal bursts of flexor and extensor activity. Several quantitative models are followed by health professionals to diagnose gait abnormality. Marker-based gait quantificati...

Full description

Bibliographic Details
Main Authors: Dey, M. (Author), Dudley, S. (Author), Ghavami, M. (Author), Rana, S.P (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03131nam a2200469Ia 4500
001 10.1109-JSEN.2022.3154092
008 220425s2022 CNT 000 0 und d
020 |a 1530437X (ISSN) 
245 1 0 |a Markerless Gait Classification Employing 3D IR-UWB Physiological Motion Sensing 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
300 |a 11 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JSEN.2022.3154092 
520 3 |a Human gait refers to the propulsion achieved by the effort of human limbs, a reflex progression resulting from the rhythmic reciprocal bursts of flexor and extensor activity. Several quantitative models are followed by health professionals to diagnose gait abnormality. Marker-based gait quantification is considered a gold standard by the research and health communities. It reconstructs motion in 3D and provides parameters to measure gait. But, it is an expensive and intrusive technique, limited to soft tissue artefact, prone to incorrect marker positioning, and skin sensitivity problems. Hence, markerless, swiftly deployable, non-intrusive, camera-less prototypes would be a game changing possibility, and an example is proposed here. This paper illustrates a 3D gait motion analyser employing impulse radio ultra-wide band (IR-UWB) wireless technology. The prototype can measure 3D motion and determine quantitative parameters considering anatomical reference planes. Knee angles have been calculated from the gait by applying vector algebra. Simultaneously, the model has been corroborated with the popular markerless camera based 3D motion capturing system, the Kinect sensor. Bland and Altman (BA) statistics has been applied to the proposed prototype and Kinect sensor results to verify the measurement agreement. Finally, the proposed prototype has been incorporated with popular supervised machine learning such as,   |  -nearest neighbour (   |k NN  |  ), support vector machine (SVM) and the deep learning technique deep neural multilayer perceptron (DMLP) network to automatically recognize gait abnormalities, with promising results presented. © 2001-2012 IEEE. 
650 0 4 |a Bland and altman plot 
650 0 4 |a Bland and Altman plot 
650 0 4 |a Cameras 
650 0 4 |a deep multilayer perceptron 
650 0 4 |a Deep multilayer perceptron 
650 0 4 |a Gait 
650 0 4 |a Gait 
650 0 4 |a Gait abnormalities 
650 0 4 |a Impulse noise 
650 0 4 |a Impulse Radio 
650 0 4 |a Impulse radio ultra-wide band 
650 0 4 |a impulse radio ultra-wide band (IR-UWB) 
650 0 4 |a Kinect xbox sensor 
650 0 4 |a Kinect Xbox sensor 
650 0 4 |a knee angle extraction 
650 0 4 |a Knee angle extraction 
650 0 4 |a machine learning 
650 0 4 |a Markerless 
650 0 4 |a Multilayer neural networks 
650 0 4 |a Multilayers 
650 0 4 |a Multilayers perceptrons 
650 0 4 |a Radio 
650 0 4 |a Support vector machines 
650 0 4 |a Ultra-wideband (UWB) 
700 1 |a Dey, M.  |e author 
700 1 |a Dudley, S.  |e author 
700 1 |a Ghavami, M.  |e author 
700 1 |a Rana, S.P.  |e author 
773 |t IEEE Sensors Journal