Neural Network Detection for Bandwidth-Limited Non-Orthogonal Multiband CAP UVLC System

In this paper, we propose a novel sparse data-to-symbol neural network (SDSNN) receiver for bandwidth-limited underwater visible light communication (UVLC) based on non-orthogonal multi-band carrierless amplitude and phase modulation (NM-CAP). Bandwidth limited NM-CAP signals usually carry severe in...

Full description

Bibliographic Details
Main Authors: Chen, J. (Author), Chi, N. (Author), Li, Z. (Author), Shen, C. (Author), Wang, Z. (Author), Zhang, J. (Author), Zhao, Y. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02850nam a2200445Ia 4500
001 10.1109-JPHOT.2022.3162472
008 220510s2022 CNT 000 0 und d
020 |a 19430655 (ISSN) 
245 1 0 |a Neural Network Detection for Bandwidth-Limited Non-Orthogonal Multiband CAP UVLC System 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JPHOT.2022.3162472 
520 3 |a In this paper, we propose a novel sparse data-to-symbol neural network (SDSNN) receiver for bandwidth-limited underwater visible light communication (UVLC) based on non-orthogonal multi-band carrierless amplitude and phase modulation (NM-CAP). Bandwidth limited NM-CAP signals usually carry severe inter-symbol interference (ISI) and inter-band interference (IBI). The SDSNN receiver directly converts the received NM-CAP data with ISI and IBI into quadrature amplitude modulation symbols without distortion for each sub-band. In contrast, the conventional receiver requires the least mean square (LMS) equalizer to cancel ISI, and the subcarrier component extraction with complex independent component analysis (SCE-ICA) to cancel IBI, respectively. SDSNN provides a novel receiving structure to replace post-equalization, matched filtering, and SCE-ICA. A blue-LED based UVLC system has been demonstrated utilizing NM-CAP16 with 3 sub-bands. The experimental results show that NM-CAP with the SDSNN receiver case reaches the highest spectral efficiency, where an enhancement of 43%, 20%, 6% has been measured over the orthogonal multi-band CAP case, NM-CAP with LMS equalizer case, and NM-CAP with joint LMS equalizer and SCE-ICA case, respectively. Compared with joint LMS equalizer and SCE-ICA case, the proposed SDSNN receiver can achieve 98% reduction of computational complexity. © 2009-2012 IEEE. 
650 0 4 |a Amplitude and phase modulations 
650 0 4 |a Bandwidth 
650 0 4 |a Carrier-less 
650 0 4 |a Complex networks 
650 0 4 |a Equalizers 
650 0 4 |a Independent component analysis 
650 0 4 |a Intersymbol interference 
650 0 4 |a Least mean squares 
650 0 4 |a Light 
650 0 4 |a Modulation 
650 0 4 |a Multi band 
650 0 4 |a neural network 
650 0 4 |a Neural-networks 
650 0 4 |a Non-orthogonal 
650 0 4 |a Non-orthogonal multi-band carrierless ampli-tude and phase 
650 0 4 |a Sparse data 
650 0 4 |a Sub-carriers 
650 0 4 |a underwater visible light communication 
650 0 4 |a Underwater visible light communication 
650 0 4 |a Visible light communication 
700 1 |a Chen, J.  |e author 
700 1 |a Chi, N.  |e author 
700 1 |a Li, Z.  |e author 
700 1 |a Shen, C.  |e author 
700 1 |a Wang, Z.  |e author 
700 1 |a Zhang, J.  |e author 
700 1 |a Zhao, Y.  |e author 
773 |t IEEE Photonics Journal