Exploiting Shared Knowledge from Non-COVID Lesions for Annotation-Efficient COVID-19 CT Lung Infection Segmentation

The novel Coronavirus disease (COVID-19) is a highly contagious virus and has spread all over the world, posing an extremely serious threat to all countries. Automatic lung infection segmentation from computed tomography (CT) plays an important role in the quantitative analysis of COVID-19. However,...

Full description

Bibliographic Details
Main Authors: Liao, Q. (Author), Xing, J. (Author), Yuan, L. (Author), Zhang, J. (Author), Zhang, Y. (Author), Zhu, H. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 04247nam a2200805Ia 4500
001 10.1109-JBHI.2021.3106341
008 220427s2021 CNT 000 0 und d
020 |a 21682194 (ISSN) 
245 1 0 |a Exploiting Shared Knowledge from Non-COVID Lesions for Annotation-Efficient COVID-19 CT Lung Infection Segmentation 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JBHI.2021.3106341 
520 3 |a The novel Coronavirus disease (COVID-19) is a highly contagious virus and has spread all over the world, posing an extremely serious threat to all countries. Automatic lung infection segmentation from computed tomography (CT) plays an important role in the quantitative analysis of COVID-19. However, the major challenge lies in the inadequacy of annotated COVID-19 datasets. Currently, there are several public non-COVID lung lesion segmentation datasets, providing the potential for generalizing useful information to the related COVID-19 segmentation task. In this paper, we propose a novel relation-driven collaborative learning model to exploit shared knowledge from non-COVID lesions for annotation-efficient COVID-19 CT lung infection segmentation. The model consists of a general encoder to capture general lung lesion features based on multiple non-COVID lesions, and a target encoder to focus on task-specific features based on COVID-19 infections. We develop a collaborative learning scheme to regularize feature-level relation consistency of given input and encourage the model to learn more general and discriminative representation of COVID-19 infections. Extensive experiments demonstrate that trained with limited COVID-19 data, exploiting shared knowledge from non-COVID lesions can further improve state-of-the-art performance with up to 3.0% in dice similarity coefficient and 4.2% in normalized surface dice. In addition, experimental results on large scale 2D dataset with CT slices show that our method significantly outperforms cutting-edge segmentation methods metrics. Our method promotes new insights into annotation-efficient deep learning and illustrates strong potential for real-world applications in the global fight against COVID-19 in the absence of sufficient high-quality annotations. © 2013 IEEE. 
650 0 4 |a Article 
650 0 4 |a benchmarking 
650 0 4 |a Benchmarking 
650 0 4 |a Biological organs 
650 0 4 |a clinical article 
650 0 4 |a collaborative learning 
650 0 4 |a Collaborative learning 
650 0 4 |a Collaborative learning model 
650 0 4 |a computed tomography 
650 0 4 |a computer assisted tomography 
650 0 4 |a Computerized tomography 
650 0 4 |a controlled study 
650 0 4 |a coronavirus disease 2019 
650 0 4 |a Coronaviruses 
650 0 4 |a COVID-19 
650 0 4 |a COVID-19 
650 0 4 |a deep learning 
650 0 4 |a Deep learning 
650 0 4 |a diagnostic imaging 
650 0 4 |a Evaluation metrics 
650 0 4 |a feature extraction 
650 0 4 |a Feature level 
650 0 4 |a few-shot learning 
650 0 4 |a ground glass opacity 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a image segmentation 
650 0 4 |a knowledge 
650 0 4 |a Knowledge management 
650 0 4 |a knowledge transfer 
650 0 4 |a Large dataset 
650 0 4 |a learning algorithm 
650 0 4 |a Learning systems 
650 0 4 |a liver tumor 
650 0 4 |a lung 
650 0 4 |a Lung 
650 0 4 |a lung infection 
650 0 4 |a Lung infection 
650 0 4 |a lung infection segmentation 
650 0 4 |a lung lesion 
650 0 4 |a lung nodule 
650 0 4 |a pleura effusion 
650 0 4 |a quantitative analysis 
650 0 4 |a SARS-CoV-2 
650 0 4 |a sensitivity and specificity 
650 0 4 |a Signal encoding 
650 0 4 |a Similarity coefficients 
650 0 4 |a State-of-the-art performance 
650 0 4 |a Tomography, X-Ray Computed 
650 0 4 |a Viruses 
650 0 4 |a x-ray computed tomography 
700 1 |a Liao, Q.  |e author 
700 1 |a Xing, J.  |e author 
700 1 |a Yuan, L.  |e author 
700 1 |a Zhang, J.  |e author 
700 1 |a Zhang, Y.  |e author 
700 1 |a Zhu, H.  |e author 
773 |t IEEE Journal of Biomedical and Health Informatics