Learn Fine-Grained Adaptive Loss for Multiple Anatomical Landmark Detection in Medical Images

Automatic and accurate detection of anatomical landmarks is an essential operation in medical image analysis with a multitude of applications. Recent deep learning methods have improved results by directly encoding the appearance of the captured anatomy with the likelihood maps (i.e., heatmaps). How...

Full description

Bibliographic Details
Main Authors: Chen, C. (Author), Huang, Y. (Author), Huo, E.-Z (Author), Li, R. (Author), Miao, J. (Author), Ni, D. (Author), Qian, J. (Author), Shi, W. (Author), Yang, X. (Author), Zhou, G.-Q (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 03683nam a2200697Ia 4500
001 10.1109-JBHI.2021.3080703
008 220427s2021 CNT 000 0 und d
020 |a 21682194 (ISSN) 
245 1 0 |a Learn Fine-Grained Adaptive Loss for Multiple Anatomical Landmark Detection in Medical Images 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/JBHI.2021.3080703 
520 3 |a Automatic and accurate detection of anatomical landmarks is an essential operation in medical image analysis with a multitude of applications. Recent deep learning methods have improved results by directly encoding the appearance of the captured anatomy with the likelihood maps (i.e., heatmaps). However, most current solutions overlook another essence of heatmap regression, the objective metric for regressing target heatmaps and rely on hand-crafted heuristics to set the target precision, thus being usually cumbersome and task-specific. In this paper, we propose a novel learning-to-learn framework for landmark detection to optimize the neural network and the target precision simultaneously. The pivot of this work is to leverage the reinforcement learning (RL) framework to search objective metrics for regressing multiple heatmaps dynamically during the training process, thus avoiding setting problem-specific target precision. We also introduce an early-stop strategy for active termination of the RL agent's interaction that adapts the optimal precision for separate targets considering exploration-exploitation tradeoffs. This approach shows better stability in training and improved localization accuracy in inference. Extensive experimental results on two different applications of landmark localization: 1) our in-house prenatal ultrasound (US) dataset and 2) the publicly available dataset of cephalometric X-Ray landmark detection, demonstrate the effectiveness of our proposed method. Our proposed framework is general and shows the potential to improve the efficiency of anatomical landmark detection. © 2013 IEEE. 
650 0 4 |a Active termination 
650 0 4 |a adaptive loss 
650 0 4 |a anatomic landmark 
650 0 4 |a Anatomical landmark detection 
650 0 4 |a Anatomical landmarks 
650 0 4 |a article 
650 0 4 |a awareness 
650 0 4 |a Deep learning 
650 0 4 |a exploration exploitation tradeoff 
650 0 4 |a Exploration exploitations 
650 0 4 |a female 
650 0 4 |a Female 
650 0 4 |a fetus echography 
650 0 4 |a hand 
650 0 4 |a Hand 
650 0 4 |a heating 
650 0 4 |a Heating 
650 0 4 |a heatmap regression 
650 0 4 |a human 
650 0 4 |a Humans 
650 0 4 |a Landmark detection 
650 0 4 |a Landmark localization 
650 0 4 |a Learning systems 
650 0 4 |a Learning to learn 
650 0 4 |a Localization accuracy 
650 0 4 |a Medical imaging 
650 0 4 |a Neural Networks, Computer 
650 0 4 |a Optimization 
650 0 4 |a pregnancy 
650 0 4 |a Pregnancy 
650 0 4 |a Prenatal ultrasound 
650 0 4 |a radiography 
650 0 4 |a Radiography 
650 0 4 |a reinforcement (psychology) 
650 0 4 |a reinforcement learning 
650 0 4 |a Reinforcement learning 
650 0 4 |a Ultrasonic applications 
650 0 4 |a X ray 
700 1 |a Chen, C.  |e author 
700 1 |a Huang, Y.  |e author 
700 1 |a Huo, E.-Z.  |e author 
700 1 |a Li, R.  |e author 
700 1 |a Miao, J.  |e author 
700 1 |a Ni, D.  |e author 
700 1 |a Qian, J.  |e author 
700 1 |a Shi, W.  |e author 
700 1 |a Yang, X.  |e author 
700 1 |a Zhou, G.-Q.  |e author 
773 |t IEEE Journal of Biomedical and Health Informatics