Modelling of Electronic Health Records for Time-Variant Event Learning Beyond Bio-Markers – a Case Study in Prostate Cancer

Electronic health records (EHR) of large populations constitute a vast untapped resource for data-driven diagnosis and disease progression. We develop a model capable of predicting future steps in a patient’s journey for prostate cancer (PC) and its metastases without relying on direct bi...

Full description

Bibliographic Details
Main Authors: Braun, J. (Author), Cantuaria, M.L (Author), Herp, J. (Author), Krogh, M. (Author), Nadimi, E.S (Author), Pedersen, T.B (Author), Poulsen, M.H.A (Author), Sheikh, S.P (Author), Tashk, A. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 02820nam a2200397Ia 4500
001 10.1109-ACCESS.2023.3272745
008 230529s2023 CNT 000 0 und d
020 |a 21693536 (ISSN) 
245 1 0 |a Modelling of Electronic Health Records for Time-Variant Event Learning Beyond Bio-Markers – a Case Study in Prostate Cancer 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2023 
300 |a 1 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/ACCESS.2023.3272745 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159695157&doi=10.1109%2fACCESS.2023.3272745&partnerID=40&md5=d1d024afd8659cfc757abb6751e4c1db 
520 3 |a Electronic health records (EHR) of large populations constitute a vast untapped resource for data-driven diagnosis and disease progression. We develop a model capable of predicting future steps in a patient&#x2019;s journey for prostate cancer (PC) and its metastases without relying on direct biomarker-measurements on a set of 18 529 EHR. To this end, we i) Harmonise EHR without presumptions&#x2013;events are sorted and grouped by fundamental a priori principles. ii) Develop a new Long-Short-Term Memory (LSTM) recurrent neural network node for learning temporal relations, on which we build an autoencoder based model. iii) A graph representation based on unsupervised <italic>k</italic>-means clustering of events related to PC in the autoencoder&#x2019;s latent layer.We report 88 % predicting accuracy for the targeted metastasis-related events, and lower accuracies for more general events. The model gains interpretability with a graph representation illustrating the patient journey. Most importantly, we predict that 20 % of all PC diagnosed patients will progress into metastatic disease one visit ahead of time. For the remaining patients we can predict the next step in their journey. We conclude that the model based on the new LSTM node provides a valuable tool for earlier diagnosis of life threatening metastases and quality assurance of the procedure. Author 
650 0 4 |a Autoencoder 
650 0 4 |a Biological system modeling 
650 0 4 |a Codes 
650 0 4 |a Electronic Health Records 
650 0 4 |a Event Prediction 
650 0 4 |a IEEE Sections 
650 0 4 |a Metastasis 
650 0 4 |a Predictive models 
650 0 4 |a Prostate cancer 
650 0 4 |a Prostate Cancer 
650 0 4 |a Recurrent neural networks 
650 0 4 |a Recurrent Neural Networks 
700 1 0 |a Braun, J.  |e author 
700 1 0 |a Cantuaria, M.L.  |e author 
700 1 0 |a Herp, J.  |e author 
700 1 0 |a Krogh, M.  |e author 
700 1 0 |a Nadimi, E.S.  |e author 
700 1 0 |a Pedersen, T.B.  |e author 
700 1 0 |a Poulsen, M.H.A.  |e author 
700 1 0 |a Sheikh, S.P.  |e author 
700 1 0 |a Tashk, A.  |e author 
773 |t IEEE Access