Transformer Based Traffic Flow Forecasting in SDN-VANET

Intelligent Transportation System (ITS) provides services for proper traffic assistance. ITS helps in creating a transportation system that is smart, safe and efficient. Vehicular Ad-hoc Network supplies internet connectivity to vehicles and helps in traffic guidance. This paper uses a modified tran...

Full description

Bibliographic Details
Main Authors: Hossen, M.S (Author), Hussain, F. (Author), Khan, M.S (Author), Moniruzzaman, M. (Author), Rahman, M. (Author), Shuvro, A.A (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 03203nam a2200541Ia 4500
001 10.1109-ACCESS.2023.3270889
008 230529s2023 CNT 000 0 und d
020 |a 21693536 (ISSN) 
245 1 0 |a Transformer Based Traffic Flow Forecasting in SDN-VANET 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2023 
300 |a 1 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/ACCESS.2023.3270889 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159698980&doi=10.1109%2fACCESS.2023.3270889&partnerID=40&md5=c49eedc22078e260db22f181b6f1ae9a 
520 3 |a Intelligent Transportation System (ITS) provides services for proper traffic assistance. ITS helps in creating a transportation system that is smart, safe and efficient. Vehicular Ad-hoc Network supplies internet connectivity to vehicles and helps in traffic guidance. This paper uses a modified transformer architecture for time-series vehicular data to predict traffic flow. Time-series sequences are generated from the dataset for capturing temporal dependencies. Our proposed transformer-based model has been engineered to capture inter-feature correlations along with inter-sample correlations. The 2D-Transformers model has a significant decrease in error compared with Transformers and LSTM-based models. The prediction generated from the model can be transmitted throughout a network of vehicles. So, a holistic networking model is proposed where the vehicles will be connected to Road-side Units (RSUs) and the backbone network will be Software Defined Network (SDN). The traditional design principles, that incorporate data, control and management planes together in a network device, are incapable to adapt with this much data growth, bandwidth, speed, security, and scalability compared to SDN as it provides with centralized programmable mechanism reliably. The trained parameters learned using the transformer model can be passed throughout the network for traffic guidance. Author 
650 0 4 |a Attention 
650 0 4 |a Computer architecture 
650 0 4 |a Data models 
650 0 4 |a Encoder 
650 0 4 |a Encoders 
650 0 4 |a Forecasting 
650 0 4 |a Information management 
650 0 4 |a Intelligent systems 
650 0 4 |a Intelligent vehicle highway systems 
650 0 4 |a Long short-term memory 
650 0 4 |a Network architecture 
650 0 4 |a Predictive models 
650 0 4 |a Sequence length 
650 0 4 |a Sequence lengths 
650 0 4 |a Software defined networking 
650 0 4 |a Software-defined Network 
650 0 4 |a Software-defined networkings 
650 0 4 |a Software-defined networks 
650 0 4 |a Time series 
650 0 4 |a Traffic flow 
650 0 4 |a Transformer 
650 0 4 |a Transformers 
650 0 4 |a Vehicles 
650 0 4 |a Vehicular ad hoc networks 
650 0 4 |a Vehicular Ad-hoc Network 
650 0 4 |a Vehicular Adhoc Networks (VANETs) 
650 0 4 |a Wireless sensor networks 
700 1 0 |a Hossen, M.S.  |e author 
700 1 0 |a Hussain, F.  |e author 
700 1 0 |a Khan, M.S.  |e author 
700 1 0 |a Moniruzzaman, M.  |e author 
700 1 0 |a Rahman, M.  |e author 
700 1 0 |a Shuvro, A.A.  |e author 
773 |t IEEE Access