Motion Analysis Using Global Navigation Satellite System and Physiological Data

Motion analysis by wearable sensors forms a very important research topic with a general mathematical background and applications in different areas including engineering, robotics, and neurology. This paper presents the use of the global navigation satellite system (GNSS) for detecting and recordin...

Full description

Bibliographic Details
Main Authors: Charvatova, H. (Author), Geman, O. (Author), Molcanova, A. (Author), Prochazka, A. (Author), Vysata, O. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2023
Subjects:
Online Access:View Fulltext in Publisher
View in Scopus
LEADER 03858nam a2200637Ia 4500
001 10.1109-ACCESS.2023.3270102
008 230529s2023 CNT 000 0 und d
020 |a 21693536 (ISSN) 
245 1 0 |a Motion Analysis Using Global Navigation Satellite System and Physiological Data 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2023 
300 |a 1 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/ACCESS.2023.3270102 
856 |z View in Scopus  |u https://www.scopus.com/inward/record.uri?eid=2-s2.0-85159687720&doi=10.1109%2fACCESS.2023.3270102&partnerID=40&md5=a866cc21da914f776043fed060877904 
520 3 |a Motion analysis by wearable sensors forms a very important research topic with a general mathematical background and applications in different areas including engineering, robotics, and neurology. This paper presents the use of the global navigation satellite system (GNSS) for detecting and recording the position of a moving body and the simultaneous acquisition of signals from further sensors. The application is related to the monitoring of physical activity and the analysis of the heart rate dynamics during the run at route segments of different slopes with changing speed, forming an alternative to the heart monitoring on the treadmill ergometer. The proposed computational method includes digital methods of data preprocessing, time synchronization, and data resampling to enable their correlation, feature extraction both in time and frequency domains, and classification. The datasets include signals acquired during ten experimental runs in the selected area. The detection of the patterns of motion includes segmenting the signals by analysing the GNSS data, evaluating the patterns, and classifying the motion signals under different terrain conditions. This method of classification provides a comparison of neural networks, support vector machine, Bayesian, and <italic>k</italic>-nearest neighbour methods. The highest accuracy of 93.3 % was achieved by using combined features and a two-layer neural network for classification into three classes with different slopes. The proposed method and graphical user interface suggest the efficiency of multi-channel and multi-dimensional signal processing with applications in rehabilitation, fitness movement monitoring, neurology, cardiology, engineering, and robotic systems as well. Author 
650 0 4 |a Bayesian networks 
650 0 4 |a Biomedical monitoring 
650 0 4 |a Biomedical signal processing 
650 0 4 |a cardiology 
650 0 4 |a Cardiology 
650 0 4 |a classification 
650 0 4 |a Classification (of information) 
650 0 4 |a computational intelligence 
650 0 4 |a Different slopes 
650 0 4 |a Extraction 
650 0 4 |a feature extraction 
650 0 4 |a Feature extraction 
650 0 4 |a Features extraction 
650 0 4 |a Global navigation satellite system 
650 0 4 |a global navigation satellite systems 
650 0 4 |a Global Navigation Satellite Systems 
650 0 4 |a Global positioning system 
650 0 4 |a Heart 
650 0 4 |a Heart rate 
650 0 4 |a Heart-rate 
650 0 4 |a Learning systems 
650 0 4 |a machine learning 
650 0 4 |a Machine-learning 
650 0 4 |a Monitoring 
650 0 4 |a Motion analysis 
650 0 4 |a Multichannel signal processing 
650 0 4 |a Multi-channel signal processing 
650 0 4 |a Navigation 
650 0 4 |a Network layers 
650 0 4 |a physical activity monitoring 
650 0 4 |a Physical activity monitoring 
650 0 4 |a Robots 
650 0 4 |a Satellites 
650 0 4 |a Sensors 
650 0 4 |a Smart phones 
650 0 4 |a Smartphones 
700 1 0 |a Charvatova, H.  |e author 
700 1 0 |a Geman, O.  |e author 
700 1 0 |a Molcanova, A.  |e author 
700 1 0 |a Prochazka, A.  |e author 
700 1 0 |a Vysata, O.  |e author 
773 |t IEEE Access