Optimization of Injection-Compression Molding Processing Conditions for Fresnel Lens Based on Optical Performance and Geometry Deformation Considerations

Mold flow simulations are performed to determine the processing conditions which optimize the optical performance and geometry deformation of a plastic Fresnel lens manufactured using the injection-compression molding (ICM) technique. Due to the quality requirements of plastic optical components in...

Full description

Bibliographic Details
Main Authors: Lin, C.-M (Author), Miau, T.-H (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02760nam a2200445Ia 4500
001 10.1109-ACCESS.2022.3184320
008 220718s2022 CNT 000 0 und d
020 |a 21693536 (ISSN) 
245 1 0 |a Optimization of Injection-Compression Molding Processing Conditions for Fresnel Lens Based on Optical Performance and Geometry Deformation Considerations 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/ACCESS.2022.3184320 
520 3 |a Mold flow simulations are performed to determine the processing conditions which optimize the optical performance and geometry deformation of a plastic Fresnel lens manufactured using the injection-compression molding (ICM) technique. Due to the quality requirements of plastic optical components in ICM manufacturing (it is hoped to achieve the goals of minimum deformation and minimum birefringence), and pursuing the above two conflicting objectives and meeting the quality requirements at the same time is the best product optimization. The analysis process is to optimize optical path difference and optical axial displacement individually by Taguchi method, and two sets of processing parameters are obtained respectively. Based on these data, a set of processing parameters that can optimize two objectives at the same time is obtained by using the grey relational analysis. If the above process cannot obtain optimal result, the fixed factor method can fix the most significant factor and continue to process the optimization analysis of the remaining factors. The results show that the presented method can indeed solve the problems of dual-objectives optimization and large differences in the influence of factors. © 2013 IEEE. 
650 0 4 |a Axial displacements 
650 0 4 |a Compression molding 
650 0 4 |a Deformation 
650 0 4 |a Elastomers 
650 0 4 |a Factor analysis 
650 0 4 |a Fixed-factor 
650 0 4 |a Fresnel lens 
650 0 4 |a grey relational analysis 
650 0 4 |a Grey relational analysis 
650 0 4 |a Injection molding 
650 0 4 |a injection-compression molding 
650 0 4 |a Injection-compression moldings 
650 0 4 |a Optical- 
650 0 4 |a optical axial displacement 
650 0 4 |a Optical axial displacement 
650 0 4 |a Optical instrument lenses 
650 0 4 |a optical path difference 
650 0 4 |a Optical path difference 
650 0 4 |a Optical refraction 
650 0 4 |a Optimisations 
650 0 4 |a Plastic products 
650 0 4 |a Solid modelling 
650 0 4 |a Taguchi method 
650 0 4 |a Taguchi methods 
650 0 4 |a Taguchi's methods 
700 1 |a Lin, C.-M.  |e author 
700 1 |a Miau, T.-H.  |e author 
773 |t IEEE Access  |x 21693536 (ISSN)  |g 10, 65401-65413