Orthogonal Single-Target Tracking

In this study, we propose a novel Wasserstein distributional tracking method that can balance approximation with accuracy in terms of Monte Carlo estimation. To achieve this goal, we present three different systems: sliced Wasserstein-based (SWT), projected Wasserstein-based (PWT), and orthogonal co...

Full description

Bibliographic Details
Main Authors: Kim, Y. (Author), Kwon, J. (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
Online Access:View Fulltext in Publisher
Description
Summary:In this study, we propose a novel Wasserstein distributional tracking method that can balance approximation with accuracy in terms of Monte Carlo estimation. To achieve this goal, we present three different systems: sliced Wasserstein-based (SWT), projected Wasserstein-based (PWT), and orthogonal coupled Wasserstein-based (OCWT) visual tracking systems. Sliced Wasserstein-based visual trackers can find accurate target configurations using the optimal transport plan, which minimizes the discrepancy between appearance distributions described by the estimated and ground truth configurations. Because this plan involves a finite number of probability distributions, the computation costs can be considerably reduced. Projected Wasserstein-based and orthogonal coupled Wasserstein-based visual trackers further enhance the accuracy of visual trackers using bijective mapping functions and orthogonal Monte Carlo, respectively. Experimental results demonstrate that our approach can balance computational efficiency with accuracy, and the proposed visual trackers outperform other state-of-the-art visual trackers on several benchmark visual tracking datasets. © 2013 IEEE.
ISBN:21693536 (ISSN)
DOI:10.1109/ACCESS.2022.3162200