The Probability Density Function of Bearing Obtained From a Cartesian-to-Polar Transformation

The problem of tracking a two-dimensional Cartesian state of a target using polar observations is well known. At a close range, a traditional extended Kalman filter (EKF) can fail owing to nonlinearity introduced by the Cartesian-to-polar transformation in the observation prediction step of the filt...

Full description

Bibliographic Details
Main Authors: Ford, K.R (Author), Haug, A.J (Author)
Format: Article
Language:English
Published: Institute of Electrical and Electronics Engineers Inc. 2022
Subjects:
PDF
Online Access:View Fulltext in Publisher
LEADER 02236nam a2200373Ia 4500
001 10.1109-ACCESS.2022.3161974
008 220425s2022 CNT 000 0 und d
020 |a 21693536 (ISSN) 
245 1 0 |a The Probability Density Function of Bearing Obtained From a Cartesian-to-Polar Transformation 
260 0 |b Institute of Electrical and Electronics Engineers Inc.  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1109/ACCESS.2022.3161974 
520 3 |a The problem of tracking a two-dimensional Cartesian state of a target using polar observations is well known. At a close range, a traditional extended Kalman filter (EKF) can fail owing to nonlinearity introduced by the Cartesian-to-polar transformation in the observation prediction step of the filter. This is a byproduct of the nonlinear transformation acting on the state variables, which make up a bivariate Gaussian distribution. The nonlinear transformation in question is the arctangent of Cartesian state variables   |  and   |  , which corresponds to the target bearing. At long range, the bearing behaves as a wrapped Gaussian random variable, and behaves well for the EKF. At close range, the bearing is shown to be non-Gaussian, converging to the wrapped uniform distribution when   |  and   |  are uncorrelated. This study provides a concise derivation of the probability density function (PDF) for bearing for the EKF observation prediction step and explores the limiting behavior for this distribution while parameterizing the target range. © 2013 IEEE. 
650 0 4 |a Arctangent 
650 0 4 |a Bearing 
650 0 4 |a Bearing 
650 0 4 |a Bivariate gaussian distributions 
650 0 4 |a Cartesians 
650 0 4 |a Close range 
650 0 4 |a Extended Kalman filters 
650 0 4 |a Gaussian 
650 0 4 |a Gaussian distribution 
650 0 4 |a Gaussian noise (electronic) 
650 0 4 |a Gaussians 
650 0 4 |a Kalman filter 
650 0 4 |a Mathematical transformations 
650 0 4 |a Non-linear transformations 
650 0 4 |a PDF 
650 0 4 |a Polar transformations 
650 0 4 |a Probability density function 
650 0 4 |a State-variables 
650 0 4 |a Two-dimensional 
700 1 |a Ford, K.R.  |e author 
700 1 |a Haug, A.J.  |e author 
773 |t IEEE Access