Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts

Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased c...

Full description

Bibliographic Details
Main Authors: Dogan, E. (Author), Ficheux, Q. (Author), Manucharyan, V.E (Author), Nesterov, K.N (Author), Nguyen, L.B (Author), Rosenstock, D. (Author), Somoroff, A. (Author), Vavilov, M.G (Author), Wang, C. (Author), Xiong, H. (Author)
Format: Article
Language:English
Published: American Physical Society 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02488nam a2200409Ia 4500
001 10.1103-PhysRevResearch.4.023040
008 220510s2022 CNT 000 0 und d
020 |a 26431564 (ISSN) 
245 1 0 |a Arbitrary controlled-phase gate on fluxonium qubits using differential ac Stark shifts 
260 0 |b American Physical Society  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1103/PhysRevResearch.4.023040 
520 3 |a Large scale quantum computing motivates the invention of two-qubit gate schemes that not only maximize the gate fidelity but also draw minimal resources. In the case of superconducting qubits, the weak anharmonicity of transmons imposes profound constraints on the gate design, leading to increased complexity of devices and control protocols. Here we demonstrate a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits. Namely, applying an off-resonant drive to noncomputational transitions in a pair of capacitively-coupled fluxoniums induces a ZZ interaction due to unequal ac Stark shifts of the computational levels. With a continuous choice of frequency and amplitude, the drive can either cancel the static ZZ term or increase it by an order of magnitude to enable a controlled-phase (CP) gate with an arbitrary programmed phase shift. The cross-entropy benchmarking of these non-Clifford operations yields a sub 1% error, limited solely by incoherent processes. Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors. © 2022 authors. Published by the American Physical Society. 
650 0 4 |a AC Stark shift 
650 0 4 |a Anharmonic 
650 0 4 |a Anharmonicities 
650 0 4 |a Control protocols 
650 0 4 |a Controlled phase gate 
650 0 4 |a Gate design 
650 0 4 |a Gate fidelity 
650 0 4 |a Integrated circuit design 
650 0 4 |a Large-scales 
650 0 4 |a Logic gates 
650 0 4 |a Quantum Computing 
650 0 4 |a Qubits 
650 0 4 |a Superconducting devices 
650 0 4 |a Superconducting qubits 
700 1 |a Dogan, E.  |e author 
700 1 |a Ficheux, Q.  |e author 
700 1 |a Manucharyan, V.E.  |e author 
700 1 |a Nesterov, K.N.  |e author 
700 1 |a Nguyen, L.B.  |e author 
700 1 |a Rosenstock, D.  |e author 
700 1 |a Somoroff, A.  |e author 
700 1 |a Vavilov, M.G.  |e author 
700 1 |a Wang, C.  |e author 
700 1 |a Xiong, H.  |e author 
773 |t Physical Review Research