Fault-tolerant resource estimate for quantum chemical simulations: Case study on Li-ion battery electrolyte molecules

We estimate the resources required in the fusion-based quantum computing scheme to simulate electrolyte molecules in Li-ion batteries on a fault-tolerant, photonic quantum computer. We focus on the molecules that can provide practical solutions to industrially relevant problems. Certain fault-tolera...

Full description

Bibliographic Details
Main Authors: Kim, I.H (Author), Lee, E. (Author), Liu, Y.-H (Author), Pallister, S. (Author), Pol, W. (Author), Roberts, S. (Author)
Format: Article
Language:English
Published: American Physical Society 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02362nam a2200385Ia 4500
001 10.1103-PhysRevResearch.4.023019
008 220510s2022 CNT 000 0 und d
020 |a 26431564 (ISSN) 
245 1 0 |a Fault-tolerant resource estimate for quantum chemical simulations: Case study on Li-ion battery electrolyte molecules 
260 0 |b American Physical Society  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1103/PhysRevResearch.4.023019 
520 3 |a We estimate the resources required in the fusion-based quantum computing scheme to simulate electrolyte molecules in Li-ion batteries on a fault-tolerant, photonic quantum computer. We focus on the molecules that can provide practical solutions to industrially relevant problems. Certain fault-tolerant operations require the use of single-qubit "magic states"prepared by dedicated "magic state factories"(MSFs). Producing and consuming magic states in parallel is typically a prohibitively expensive task, resulting in the serial application of fault-tolerant gates. However, for the systems considered, the MSF constitutes a negligible fraction of the total footprint of the quantum computer, allowing for the use of multiple MSFs to produce magic states in parallel. We suggest architectural and algorithmic techniques that can accommodate such a capability. We propose a method to consume multiple magic states simultaneously, which can potentially lead to an order of magnitude reduction in the computational runtime without additional expense in the footprint. © 2022 authors. Published by the American Physical Society. 
650 0 4 |a Case-studies 
650 0 4 |a Computing scheme 
650 0 4 |a Electrolytes 
650 0 4 |a Fault tolerance 
650 0 4 |a Fault tolerant operations 
650 0 4 |a Fault-tolerant 
650 0 4 |a Li-ion battery electrolytes 
650 0 4 |a Lithium-ion batteries 
650 0 4 |a Molecules 
650 0 4 |a Practical solutions 
650 0 4 |a Quanta computers 
650 0 4 |a Quantum chemistry 
650 0 4 |a Quantum Computing 
650 0 4 |a Quantum-chemical simulations 
650 0 4 |a Qubits 
650 0 4 |a Single qubits 
700 1 |a Kim, I.H.  |e author 
700 1 |a Lee, E.  |e author 
700 1 |a Liu, Y.-H.  |e author 
700 1 |a Pallister, S.  |e author 
700 1 |a Pol, W.  |e author 
700 1 |a Roberts, S.  |e author 
773 |t Physical Review Research