Prolonged Orbital Relaxation by Locally Modified Phonon Density of States for the SiV- Center in Nanodiamonds

Coherent quantum systems are a key resource for emerging quantum technology. Solid-state spin systems are of particular importance for compact and scalable devices. However, interaction with the solid-state host degrades the coherence properties. The negatively charged silicon vacancy center in diam...

Full description

Bibliographic Details
Main Authors: Agafonov, V.N (Author), Davydov, V.A (Author), Doherty, M.W (Author), Fehler, K.G (Author), Häußler, S. (Author), Klotz, M. (Author), Kubanek, A. (Author), Kulikova, L.F (Author), Reddy, P. (Author), Steiger, E.S (Author), Waltrich, R. (Author)
Format: Article
Language:English
Published: American Physical Society 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02642nam a2200421Ia 4500
001 10.1103-PhysRevLett.128.153602
008 220510s2022 CNT 000 0 und d
020 |a 00319007 (ISSN) 
245 1 0 |a Prolonged Orbital Relaxation by Locally Modified Phonon Density of States for the SiV- Center in Nanodiamonds 
260 0 |b American Physical Society  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1103/PhysRevLett.128.153602 
520 3 |a Coherent quantum systems are a key resource for emerging quantum technology. Solid-state spin systems are of particular importance for compact and scalable devices. However, interaction with the solid-state host degrades the coherence properties. The negatively charged silicon vacancy center in diamond is such an example. While spectral properties are outstanding, with optical coherence protected by the defects symmetry, the spin coherence is susceptible to rapid orbital relaxation limiting the spin dephasing time. A prolongation of the orbital relaxation time is therefore of utmost urgency and has been tackled by operating at very low temperatures or by introducing large strain. However, both methods have significant drawbacks: the former requires use of dilution refrigerators and the latter affects intrinsic symmetries. Here, a novel method is presented to prolong the orbital relaxation with a locally modified phonon density of states in the relevant frequency range, by restricting the diamond host to below 100 nm. Subsequently measured coherent population trapping shows an extended spin dephasing time compared to the phonon-limited time in a pure bulk diamond. The method works at liquid helium temperatures of few Kelvin and in the low-strain regime. © 2022 American Physical Society. 
650 0 4 |a Coherence properties 
650 0 4 |a Dephasing time 
650 0 4 |a Key resources 
650 0 4 |a Nanodiamonds 
650 0 4 |a Orbital relaxation 
650 0 4 |a Phonon density of state 
650 0 4 |a Phonons 
650 0 4 |a Quantum optics 
650 0 4 |a Quantum system 
650 0 4 |a Quantum technologies 
650 0 4 |a Spin dephasing 
650 0 4 |a Spin systems 
650 0 4 |a Spin-s systems 
650 0 4 |a Superfluid helium 
700 1 |a Agafonov, V.N.  |e author 
700 1 |a Davydov, V.A.  |e author 
700 1 |a Doherty, M.W.  |e author 
700 1 |a Fehler, K.G.  |e author 
700 1 |a Häußler, S.  |e author 
700 1 |a Klotz, M.  |e author 
700 1 |a Kubanek, A.  |e author 
700 1 |a Kulikova, L.F.  |e author 
700 1 |a Reddy, P.  |e author 
700 1 |a Steiger, E.S.  |e author 
700 1 |a Waltrich, R.  |e author 
773 |t Physical Review Letters