Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer

The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entang...

Full description

Bibliographic Details
Main Authors: Dreiling, J. (Author), Figgatt, C. (Author), Foss-Feig, M. (Author), Gaebler, J. (Author), Hall, A. (Author), Hayes, D. (Author), Moses, S. (Author), Neyenhuis, B. (Author), Pino, J. (Author), Potter, A. (Author), Ragole, S. (Author), Spaun, B. (Author)
Format: Article
Language:English
Published: American Physical Society 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02354nam a2200469Ia 4500
001 10.1103-PhysRevLett.128.150504
008 220510s2022 CNT 000 0 und d
020 |a 00319007 (ISSN) 
245 1 0 |a Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer 
260 0 |b American Physical Society  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1103/PhysRevLett.128.150504 
520 3 |a The ability to selectively measure, initialize, and reuse qubits during a quantum circuit enables a mapping of the spatial structure of certain tensor-network states onto the dynamics of quantum circuits, thereby achieving dramatic resource savings when simulating quantum systems with limited entanglement. We experimentally demonstrate a significant benefit of this approach to quantum simulation: the entanglement structure of an infinite system - specifically the half-chain entanglement spectrum - is conveniently encoded within a small register of "bond qubits"and can be extracted with relative ease. Using Honeywell's model H0 quantum computer equipped with selective midcircuit measurement and reset, we quantitatively determine the near-critical entanglement entropy of a correlated spin chain directly in the thermodynamic limit and show that its phase transition becomes quickly resolved upon expanding the bond-qubit register. © 2022 American Physical Society. 
650 0 4 |a Infinite system 
650 0 4 |a Network state 
650 0 4 |a Phase transitions 
650 0 4 |a Quanta computers 
650 0 4 |a Quantum chemistry 
650 0 4 |a Quantum circuit 
650 0 4 |a Quantum entanglement 
650 0 4 |a Quantum optics 
650 0 4 |a Quantum simulations 
650 0 4 |a Quantum system 
650 0 4 |a Qubits 
650 0 4 |a Resource savings 
650 0 4 |a Reuse 
650 0 4 |a Spatial structure 
650 0 4 |a Tensors 
650 0 4 |a Trapped ion 
650 0 4 |a Trapped ions 
700 1 |a Dreiling, J.  |e author 
700 1 |a Figgatt, C.  |e author 
700 1 |a Foss-Feig, M.  |e author 
700 1 |a Gaebler, J.  |e author 
700 1 |a Hall, A.  |e author 
700 1 |a Hayes, D.  |e author 
700 1 |a Moses, S.  |e author 
700 1 |a Neyenhuis, B.  |e author 
700 1 |a Pino, J.  |e author 
700 1 |a Potter, A.  |e author 
700 1 |a Ragole, S.  |e author 
700 1 |a Spaun, B.  |e author 
773 |t Physical Review Letters