Does SLOPE outperform bridge regression?

A recently proposed SLOPE estimator [6] has been shown to adaptively achieve the minimax

Bibliographic Details
Main Authors: Maleki, A. (Author), Wang, S. (Author), Weng, H. (Author)
Format: Article
Language:English
Published: Oxford University Press 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 02029nam a2200289Ia 4500
001 10.1093-imaiai-iaab025
008 220425s2022 CNT 000 0 und d
020 |a 20498772 (ISSN) 
245 1 0 |a Does SLOPE outperform bridge regression? 
260 0 |b Oxford University Press  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1093/imaiai/iaab025 
520 3 |a A recently proposed SLOPE estimator [6] has been shown to adaptively achieve the minimax   |\ ell _2  |  estimation rate under high-dimensional sparse linear regression models [25]. Such minimax optimality holds in the regime where the sparsity level   |,  sample size   |  and dimension   |  satisfy   |k /p\rightarrow 0, k\log p/n\rightarrow 0  |.  In this paper, we characterize the estimation error of SLOPE under the complementary regime where both   |  and   |  scale linearly with   |,  and provide new insights into the performance of SLOPE estimators. We first derive a concentration inequality for the finite sample mean square error (MSE) of SLOPE. The quantity that MSE concentrates around takes a complicated and implicit form. With delicate analysis of the quantity, we prove that among all SLOPE estimators, LASSO is optimal for estimating   |- sparse parameter vectors that do not have tied nonzero components in the low noise scenario. On the other hand, in the large noise scenario, the family of SLOPE estimators are sub-optimal compared with bridge regression such as the Ridge estimator. © 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 
650 0 4 |a 2000 Math Subject Classification 
650 0 4 |a 34K30 
650 0 4 |a 35K57 
650 0 4 |a 35Q80 
650 0 4 |a 92D25 
650 0 4 |a Concentration inequality 
650 0 4 |a LASSO 
650 0 4 |a mean square error 
650 0 4 |a noise sensitivity 
650 0 4 |a Ridge 
650 0 4 |a SLOPE 
700 1 |a Maleki, A.  |e author 
700 1 |a Wang, S.  |e author 
700 1 |a Weng, H.  |e author 
773 |t Information and Inference