Distributed information-theoretic clustering

We study a novel multi-terminal source coding setup motivated by the biclustering problem. Two separate encoders observe two i.i.d. sequences

Bibliographic Details
Main Authors: Matz, G. (Author), Piantanida, P. (Author), Pichler, G. (Author)
Format: Article
Language:English
Published: Oxford University Press 2022
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01697nam a2200205Ia 4500
001 10.1093-imaiai-iaab007
008 220425s2022 CNT 000 0 und d
020 |a 20498772 (ISSN) 
245 1 0 |a Distributed information-theoretic clustering 
260 0 |b Oxford University Press  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1093/imaiai/iaab007 
520 3 |a We study a novel multi-terminal source coding setup motivated by the biclustering problem. Two separate encoders observe two i.i.d. sequences   |x ^n  |  and   |y ^n  |,  respectively. The goal is to find rate-limited encodings   |f (x^n)  |  and   |g (z^n)  |  that maximize the mutual information   |\ textrm{I}(\,{f(X^n)};{g(Y^n)})/n  |.  We discuss connections of this problem with hypothesis testing against independence, pattern recognition and the information bottleneck method. Improving previous cardinality bounds for the inner and outer bounds allows us to thoroughly study the special case of a binary symmetric source and to quantify the gap between the inner and the outer bound in this special case. Furthermore, we investigate a multiple description (MD) extension of the CEO problem with mutual information constraint. Surprisingly, this MD-CEO problem permits a tight single-letter characterization of the achievable region. © 2021 The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 
650 0 4 |a CEO problem 
650 0 4 |a information bottleneck 
650 0 4 |a mutual information 
650 0 4 |a source coding 
700 1 |a Matz, G.  |e author 
700 1 |a Piantanida, P.  |e author 
700 1 |a Pichler, G.  |e author 
773 |t Information and Inference