mlr3proba: An R package for machine learning in survival analysis

As machine learning has become increasingly popular over the last few decades, so too has the number of machine-learning interfaces for implementing these models. Whilst many R libraries exist for machine learning, very few offer extended support for survival analysis. This is problematic considerin...

Full description

Bibliographic Details
Main Authors: Bender, A. (Author), Bischl, B. (Author), Király, F.J (Author), Lang, M. (Author), Sonabend, R. (Author)
Format: Article
Language:English
Published: Oxford University Press 2021
Subjects:
Online Access:View Fulltext in Publisher
LEADER 01488nam a2200265Ia 4500
001 10.1093-bioinformatics-btab039
008 220427s2021 CNT 000 0 und d
020 |a 13674803 (ISSN) 
245 1 0 |a mlr3proba: An R package for machine learning in survival analysis 
260 0 |b Oxford University Press  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1093/bioinformatics/btab039 
520 3 |a As machine learning has become increasingly popular over the last few decades, so too has the number of machine-learning interfaces for implementing these models. Whilst many R libraries exist for machine learning, very few offer extended support for survival analysis. This is problematic considering its importance in fields like medicine, bioinformatics, economics, engineering and more. mlr3proba provides a comprehensive machine-learning interface for survival analysis and connects with mlr3's general model tuning and benchmarking facilities to provide a systematic infrastructure for survival modelling and evaluation. © The Author(s) 2021. Published by Oxford University Press. 
650 0 4 |a article 
650 0 4 |a benchmarking 
650 0 4 |a bioinformatics 
650 0 4 |a economics 
650 0 4 |a library 
650 0 4 |a machine learning 
650 0 4 |a survival analysis 
700 1 |a Bender, A.  |e author 
700 1 |a Bischl, B.  |e author 
700 1 |a Király, F.J.  |e author 
700 1 |a Lang, M.  |e author 
700 1 |a Sonabend, R.  |e author 
773 |t Bioinformatics