HITCHIN SYSTEMS FOR INVARIANT AND ANTI-INVARIANT VECTOR BUNDLES

Given a smooth projective complex curve X with an involution σ, we study the Hitchin systems for the locus of anti-invariant (resp. invariant) stable vector bundles over X under σ. Using these integrable systems and the theory of the nilpotent cone, we study the irreducibility of these loci. The ant...

Full description

Bibliographic Details
Main Author: Hacen, Z. (Author)
Format: Article
Language:English
Published: American Mathematical Society 2022
Online Access:View Fulltext in Publisher
LEADER 00898nam a2200133Ia 4500
001 10.1090-tran-8599
008 220425s2022 CNT 000 0 und d
020 |a 00029947 (ISSN) 
245 1 0 |a HITCHIN SYSTEMS FOR INVARIANT AND ANTI-INVARIANT VECTOR BUNDLES 
260 0 |b American Mathematical Society  |c 2022 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1090/tran/8599 
520 3 |a Given a smooth projective complex curve X with an involution σ, we study the Hitchin systems for the locus of anti-invariant (resp. invariant) stable vector bundles over X under σ. Using these integrable systems and the theory of the nilpotent cone, we study the irreducibility of these loci. The anti-invariant locus can be thought of as a generalisation of Prym varieties to higher rank. © 2022 American Mathematical Society. 
700 1 |a Hacen, Z.  |e author 
773 |t Transactions of the American Mathematical Society