Summary: | In the present article, we give a method to deal with DahlbergKenig-Pipher (DPK) operators in boundary value problems on the upper half plane. We give a nice subclass of the weak DKP operators that generates the full class of weak DKP operators under the action of bi-Lipschitz changes of variable on Rn+ that fix the boundary Rn-1. Therefore, if one wants to prove a property on DKP operators which is stable by bi-Lipschitz transformations, one can directly assume that the operator belongs to the subclass. Our method gives an alternative proof to some past results and self-improves others beyond the existing literature. © 2022 American Mathematical Society.
|